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1 Introduction

In the theory of languages of in�nite words and the �nite state automata capable of recognizing them, the
cornerstone was set in 1960 by J.R. Büchi [10]. Studying the decidability of the fragment of second order logic
known as Monadic Second Order Logic (MSO1), Büchi proposed a �nite state, nondeterministic automaton ha-
ving a certain criteria by which this machine would accept or reject in�nite sequences of symbols, or rather words
over some �nite set. With further investigation, the sets of in�nite sequences accepted by a Büchi automaton�
languages� formed a proper class in the set of all languages of in�nite words over a �xed �nite alphabet : these
are now known as the ω-Regular or ω-Rational languages (ω-REG).
[11]

The properties of this class became then of primary interest in automata theory, formal language theory, and
theoretical computer science, having applications in the latter �eld especially for the study of nonterminating
systems and programming languages. Other authors in these �elds such as McNaughton, Muller, Landweber,
and Kurt Wagner ([8], [9], [7], [11]) soon expanded upon Büchi's work. Of particular interest were the proposed
variants of Büchi's initial automaton construction, such as more complex or restrictive acceptance conditions,
or requiring an automaton be deterministic or not.

It was observed that di�erent modes of acceptance could directly in�uenced the class of languages an
automaton could accept, and this pattern then raised interest as to the connection between other properties
of a class of languages (for example, the topology complexity) and the complexity and/or determinancy of an
automaton's acceptance criterion.

It was found that some modes of acceptance were strictly weaker than others, and so de�ned proper subclasses
of ω-REG, although many possible modes recognizing the entire class of ω-regular languages have been shown to
be equivalent. In particular, it is a well known result that the class of languages accepted by deterministic Büchi
automata de�nes a strictly smaller class of languages than accepted by nondeterministic Büchi� the latter
class is equivalent to the entire class ω-REG. Furthermore, we have that nondeterministic and determinstic
Rabin, Streett, Muller, and parity automata also accept exactly ω-REG ; [4] covers the de�nitions of these other
automata and the associated transformations proving their equivalency.

A paper by Landweber [7] looked at six subclasses of ω-REG as de�ned by an automaton's mode of ac-
ceptance. Viewing the space of in�nite words over a �nite alphabet as homeomorphic to the space of in�nite
binary sequences (2ω), a reasonable approach to characterize these classes was to employ classical methods from
descriptive set theory so to analyze the topological complexity of the ω languages. This turned out to be quite
fruitful : there exist direct correspondences between automata-theoretic notions of acceptance and low classes
of the Borel hierarchy. For example, the proper subclass of languages accepted by deterministic Büchi machines
coincided with the Π0

2 or Gδ ω-regular languages, and that the boolean closure of this class was exactly the class
ω-REG. In other words, there is a tight correlation between ascension in the Borel hierarchy on P(Σω)

⋂
ω−REG

and the act of increasing the complexity of acceptance conditions for an automata.

The intersection between automata and descriptive set theory is more readily observable by an example :
In descriptive set theory, for a �nite set A of natural numbers, we consider the usual product of discrete
topologies on the space Aω of in�nite sequences of elements from A. An open set for this topology, say U ⊆ Aω,
is characterized by having a de�nition using only existential quanti�cation : x ∈ U ⇔ ∃i ∈ N such that x[i] ∈ U ,
where x[i] denotes the initial segment of length i of the in�nite sequence x ∈ Aω.
Switching frames of reference, we might characterize an open ω-regular language L ⊆ Aω over �nite alphabet A
by way of a �nite state automaton A which recognizes or accepts a word x if and only if there exists a natural
number i such that the pre�x x[i] ∈ Ai belongs to the �nitary language V 1 over alphabet A. The language L
thus admits the expression L = V.Aω ; any word of L is an in�nite length word having some pre�x in V .

1. requiring also V be calculable by a �nite state machine on �nite words
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In light of these correspondences, the study of the ω- regular languages gained traction by using classical
results and techniques from descriptive set theory, such as the notion of Wadge reducibility and di�erence
hierarchies of the ambiguous Borel classes (∆0

α for α > 1 a countable ordinal).
In this paper we intend to present some of these �ndings concerning the various hierarchies with which one

can classify the ω-Regular languages. We look beyond the descriptive set theory measures of complexity and
introduce theWagner hierarchy, induced by the chain and superchain measures, and are shown in [11] to be
invariant of the speci�c automaton used to recognize a language. The proof we present from [11] in section 3 of
this paper demonstrates this invariance property.
The other pertinence of studying Wagner's measures is that the resulting hierarchy is a proper re�nement of
the Borel classes of P(Σω) occupied by the ω-regular languages.

After looking at the so called exact complexity classes, we will give another measure Wagner proposes in
[11] which has an easy correspondance with the chain measures. This other measure, called the Rabin Index,
is di�erent than the chain measure in that it does not enjoy the same sort of invariant properties, and instead
looks at properties of one type of automaton� a Rabin automaton, de�ned by Michael Rabin in his 1969 paper
looking at the decidability of second order theories. We look at the complexity measure, the Rabin Index, on
these machines to highlight alternating nature exhibited by the ω-regular languages.

If (as in the case of the chain measure but not necessarily the Rabin index) this family of conditions is
also descending and linearly ordered by set inclusion, the language de�ned can thus be expressed as a union of
di�erences. This is to say we can write a language L as

L = (L1 − L2) ∪ L3 − L4 ∪ ...Ln−1 ∪ Ln where L1 ⊇ L2 ⊇ ... ⊇ Ln−1 ⊇ Ln

Visually, L can be pictured as the shaded parts of the target as below.

These observations will lead us naturally to our study of di�erence hierarchies.
In 1992, work by Rana Barua appropriates the classical result of Hausdor� and Kuratowski about the ∆0

α

di�erence hierarchy, de�ning an automata-based hierarchy on ω-REG : roughly speaking, we place an ω-regular
language in level n of Barua's hierarchy if it is the union of pairwise di�erences of �nite, nested, decreasing
sequence of n languages, each recognizable by deterministic Büchi automata?.
We will present the proof that any L ∈ ω-REG can be placed in this hierarchy ; indeed, given such an L, it is
decidable at which n L resides. [1] also asserts the converse, that if a language L ⊆ Σω can be expressed as ?,
then L is ω-regular.

The other key result of [1] is that the levels of this hierarchy corresponds exactly to the levels of the Hausdor�-
Kuratowski di�erence hierarchy, whence the latter is restricted to just those subsets of Σω that are ω-regular.
We will present this proof as well.

In section 1 we give preliminaries and notations central to formal language theory to automata theory. A
more thorough presentation can be found in [4].
After establishing �nite state automata and how they interact with languages via variousmodes of acceptance, we
give some characterizations ω-REG and certain of its subclasses. In particular we give a table ((REF TABLE))
relating the topological interpretations and set theoretic representations of classes of languages in correspondence
with varying modes of �nite state automaton acceptance. For this we will include in section 1 some basic topology
and descriptive set theory.

In want of a �ner complexity measure on ω-languages than those provided by descriptive set theory, in
section 2 we introduce Wagner's chain and superchain measures, and the resulting hierarchy induced on ω-REG
(referred to as the Wagner hierarchy) consisting of the "exact" complexity classes Cnm, D

n
m, E

n
m, m,n ≥ 1. Next

we present a coarser variant of these classes, the downwards classes Ĉnm, D̂
n
m, Ê

n
m and show their equivalencies

with certain Borel classes 2. Section 2 also gives Wagner's [11] proof of the disjointedness of the exact complexity
classes, and thus the Wagner hierarchy is a proper re�nement of the ω-regular portion of the Borel hierarchy.
Moreover, the way this is proved also illustrates the invariant property of the chain and superchain measures :

2. we should specify here the equivalency is only once we have restricted the Borel sets to those which are ω-regular ; this will
be discussed in detail later on.
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any two �nite state automaton recognizing the same language will always be in the same complexity class.
We then de�ne another measure on complexity from [11] which is dependent upon the speci�c automaton
accepting the language : the Rabin Index. It is a measure on the complexity of acceptance conditions for a
Rabin automaton (de�ned in section 1), and it is still compatible with the chain and superchain measures.
We give the results about the correspondance between the two. Section 2 will end with some decidability results.

In section 3 we once again we switch our attention to a topological standpoint to illustrate how classical
complexity measures in descriptive set theory have applications in the study of ω-REG. In particular, we de�ne
the Hausdor�-Kuratowski Di�erence Hierarchy (abbreviated sometimes HKDC) on the Borel classes ∆α+1 of
Polish spaces 3 for α a countable non-null ordinal.
We then present an analagous di�erence hierarchy de�ned in [1] and give Barua's proof that any ω-regular
language sits in some level of that hierarchy.

At the time of Barua's work, it was already well known from [7] that the ω-regular subsets of Σω were exactly
the class of ∆0

3 subsets of this same space. Immediately then they admit some level in the HKDC, taking the
case of the Borel class ∆0

3, giving �rst a weak correspondance of these two hierarchies. But the (countably many)
ω-regular languages only stratifying an initial segment of the Borel hierarchy, it is not clear that there should be
a tighter correspondence. Indeed, this is the main result of Barua [1] : that any ω-regular L will admit the same
rank n in Barua's hierarchy as it would in the HKDC. Section 4 will present Barua's proof of the seperation-like
theorem from which the result follows almost immediately.
The techniques we will see employed are generalizations of certain ways in which Landweber [7] characterized
the ω-regular Gδ subsets. We present Barua's result here, emphasizing the separation theorem central to the
proof, and show how it is a generalization of a certain characterization of language computable by deterministic
Büchi automata : that it be accepted also by a full-table Muller automata. We then revisit Wagner's chain

measure and see how this property manifests itself in the class Ĉ1
2 by giving a more thorough illustration of

calculating the measures m++,m−, n+, n− for languages accepted by full-table Muller automata.
It is important also to see Barua's method of proof because it gives an algorithm for computing an ω-regular

language's position in the restricted HKDC (equivalently, Barua's hierarchy). Moreover this algorithm suggests
yet another way of classifying ω-REG, namely by way of the complexity of Muller automaton. We de�ne the
classes of this hierarchy as well. Section 4 will end with decidability results. At the end we will brie�y discuss
why the results and methods of [11], [1], [7] are important to the study of languages of �nite words and how
they might be extended to other studies. We will include references to recent surveys and studies in connection
with the topics of this paper.

2 Preliminaries

2.1 Notations ; Basic De�nitions of Formal Language Theory

We use the ordinal ω to denote the set of natural numbers N = {0, 1, 2, 3, ...}.
An alphabet Σ is a �nite set of symbols (letters). We mostly will use a, b as our letters for working purposes.
Finite words over Σ are �nite sequences x = (a1, a2, ..., an) of letters of Σ ; i.e. for all 1 ≤ i ≤ n < ω, ai ∈ Σ.
Finite words will typically be denoted by lowercase greek letters x, y, z....
The length of word x is denoted |x|, and similarly for cardinality of sets A we write |A|.
The unique word of length 0 is the empty word and is denoted by the symbol ε.
The ith coordinate of x = (a1, ..., an) is written x(i) ; it is a singleton of Σ. x(0) = ε. The concatenation
of letters a, b ∈ Σ is a.b, and for words x, y �nite words over the same alphabet Σ their concatenation is
x.y := (x(1).x(2).....x(|x|).y(1).....y(|y|)).

For words x, y such that |x| ≤ |y|, x is a pre�x of y if the sequence x is an initial segment of the sequence
y, i.e. if x(i) = y(i) for all 1 ≤ i ≤ |x|. This relation is denoted by x v y.
A language �nite words over Σ is a set whose elements are �nite words. Σ∗ denotes the set of all languages of
�nite words over Σ. Its complement, the set Σ∗ \L is written LC . Languages in Σ∗ will typically be represented
by uppercase latin letters L,K,U, ....
The concatenation operation is extended to languages : for L,K ⊆ Σ∗, their concatenation is the language

L.K := {x.y | x ∈ L, y ∈ K}

We also de�ne the union (L ∪K) and intersection (L ∩K) of languages L,K to be, respectively,

L ∪K := {x | x ∈ L ∨ x ∈ K} (1)

L ∩K := {x | x ∈ L ∧ x ∈ K} (2)

3. Polish spaces are topological spaces which are separable (contain a countable dense subset) and admit a compatible, complete
metric ; the Borel sets of these spaces are those of the σ-algebra generated by open sets
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An in�nite word (or ω-word) α over Σ is an in�nite sequence of symbols from Σ, and as for �nite words
we write α = (α(1).α(2).....α(n)....) where α(i) ∈ Σ for all i < ω. Σω is the set of all in�nite words over Σ.
The pre�x of the ω-word α is denoted α[n] = α(0).α(1).....α(n) for n < |α|. The concatenation of a �nite word
x and in�nite word α is noted x.α

We use exponential notation to denote powers of �nite languages : for L ⊆ Σ∗,
� L0 = {ε}
� Ln = {a1a2...an | ai ∈ L for all 1 ≤ i ≤ n}
� L∗ :=

⋃
n<ω L

n

The last operation is known as the Kleene Star of L, and is a language in Σ∗. The ω-power of L ⊆ Σ∗ is
de�ned similarly :
Lω = {α ∈ Σω | α = (x1.x2....xi...), xi ∈ L∀i < ω}

De�nition 1. For a language L of �nite words, the Eilenberg limit of L is the in�nite language
−→
L de�ned by

−→
L := {α ∈ Σω | α[i] ∈ L for in�nitely many i < ω} (3)

I.e.
−→
L contains those ω-words having in�nitely many pre�xes in L.

2.2 Finite State Automata

Before working with automata on in�nite words, it is helpful to introduce what entails the de�nition of an
automaton on �nite words.

De�nition 2. A �nite state automaton on �nite words A is a 5-tuple (Q,Σ, δ, q0, F ), where :
� Q is a �nite set of states
� Σ an alphabet
� δ : Q× Σ 7→ 2Q the transition relation

� q0 ∈ Q the initial state
� F ∈ P(Q) is the system of �nal states, or acceptance component

If it holds that |δ(q, a)| ≤ 1 for all q ∈ Q and all a ∈ Σ, then A is a deterministic automaton. Else, we say
A is nondeterministic.

Automata admit a natural graph theoretic interpretation : consider the directed graph GA = (V,E) with
the vertices V = Q, and the edges being the set E = {(q, q′) | ∃a ∈ Σ s.t. δ(q, a) = q′}. The edges are labeled
by the letter of Σ which A reads in transitioning from one state to the next.
The languages recognized or accepted by A is denoted L(A).
It is the set

{w ∈ Σ∗ | A accepts w}

Where A accepts w ∈ Σ∗ if and only if there exists a sequence of states (equivalently, a path through GA)
(q0, q1, ..., qn) ∈ Qn satisfying the following conditions :

1. q0 is the initial state

2. (qi, w(i), qi+1) ∈ δ for all 0 ≤ i ≤ n
3. qn ∈ F
We let REG denote the class of languages L ⊆ Σ∗ such that there exists an automate A with L = L(A),

referred to as the rational or regular languages (over �nite words). It is closed under union, concatenation,
complementation, and the Kleene-star operation.
Note that the acceptance component of a �nite state automaton on �nite words is always a subset F ⊆ Q, and
there is only one notion of acceptance.

In regards to in�nite words (or ω-words), the notion of acceptance becomes more complicated : which in-
�nite paths through a �nite graph should be considered accepting ? First we de�ne in terms of automata and
languages these in�nite paths, or runs. Runs will typically be denoted by lowercase greek letters σ, γ, ....

De�nition 3. A run of a �nite state automaton A = (Q,Σ, δ, q0,F) on a word α ∈ Σω is an in�nite sequence
(q0, q1, ..., qn, ...) of states qi ∈ Q, i < ω, such that (1) and (2) above hold.
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Two important sets are associated with a run : Occ(σ) and Inf(σ), the set of states occuring at least once
and the set of states occuring in�nitely often, respectively, in the sequence σ.

Occ(σ) := {q ∈ Q | ∃i ∈ ω s.t. σ(i) = q}

In(σ) := {q ∈ Q | ∀i∃j > i[σ(j) = q]}

A run σ can be either accepting or rejecting, depending on the mode of acceptance of the particular
automaton reading ω words.
Büchi proposed the �rst notion of an accepting run in 1960 [2]. Formally,

De�nition 4. A Büchi automata is a �nite state automata AB as in De�nition 1 ; note that the acceptance
component is still a subset of states F ⊆ Q.

For a word α ∈ Σω, AB accepts α if and only if there exists at least one run σ of AB on α such that :

In(σ) ∩ F 6= ∅ (4)

In other words, Büchi acceptance is the condition that on reading input α, the Büchi automaton A passes
in�nitely many times through at least one of the states q ∈ F .

As a �rst characterization result, we denote by ω-REG the class of ω-regular languages we have :

ω − REG = {L ⊆ Σω | ∃ a nondeterministic Büchi automaton A; L = L(A)} (5)

The ω-regular languages are closed by complement and �nite union.
Example

Let Σ = {a, b}, and let L be the language of Σω de�ned by L = {α ∈ Σω | α = (aabb)ω}.
L is recognized by the Büchi automata A = ({q0, q1, q2, q3},Σ, δ, q0, {q3}) pictured below. The double outline
around state q3 indicates this is a �nal state.

q0start

q1

q3

q2

a a

b

b

Büchi proved in [10] that the ω-regular languages are precisely those which can be expressed as

L =
⋃

1≤i≤n

Ui.V
ω
i where Ui, Vi ∈ REG ∀1 ≤ i ≤ n (6)

The above collection is called the ω-Kleene Closure of the class REG. Another way of phrasing this fact is
that any ω-regular language must contain an ultimately periodic word (In this way, checking whether a regular
ω-language is empty is decidable).

The reason behind (6) is this : for any word α in ω-regular L = L(A) for Büchi A, there is an accepting
run σ and a �nal state qF ∈ F ⊆ Q such that σ(i) = qF for in�nitely many i, and in particular there is a word
x ∈ Σ∗ such that δ(q0, x) = qF . Consider now A as an automaton on �nite words, x is an accepted word and
more generally the set U = {x ∈ Σ∗ | δ(q0, x) ∈ F} is a regular language. Similarly the set V = {x ∈ Σ∗ |
δ(qF , x) = qF for some qF ∈ F} is a regular language. Taking the union of these two sets over F (where say
|F | = n) we get the expression in (6).

Three years after Büchi's seminal work, Muller [9] gave a di�erent acceptance condition, equivalent in
expressive power to the Büchi machines, yet strengthened the characterization of ω-REG in (5) in that the
automaton he de�ned could be equivalently made deterministic. McNaughton formally proved the equivalency
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between nondeterministic Büchi and deterministic Muller in 1966 in [8]. The sharper characterization of the class
ω-REG motivated other authors to de�ne acceptance conditions, focusing on certain semantics or properties of
ω-languages they wanted to capture. Thus ensued an array of alternative modes of acceptance posed by authors
such as Streett, Rabin, Landweber, Staiger, etc.. The plurality of de�nitions invites the questions : how do
these automata di�er in their expressive power ? Are the di�erent modes of acceptance indicative of structural
properties of the language ?

Indeed, we will see that in many cases the complexity of a mode of acceptance strongly in�uential of the
topological and set theoretic properties of the class of languages the condition de�nes.

We now look at some of these di�erent modes of acceptance.

De�nition 5. A Muller automaton A = (Q,Σ, δ, q0,F) is a �nite state automaton equipped with the accep-
tance component F ⊆ P(Q), and the following acceptance condition (Muller acceptance) :

In(σ) ∈ F (7)

Theorem 1. (McNaughton)
A set L ⊆ Σω is in ω-REG if and only if there exists a Muller automaton A with L = L(A).

We reiterate that in the above theorem, A can be taken to be deterministic or nondeterministic without any
loss of expressive power.

This leads us to another important result we have been hinting at : that although any Büchi machine can
be transformed into an equivalent Muller automaton, the latter atuomata cannot always be transformed into a
deterministic Büchi automaton accepting the same language.
Therefore,

Theorem 2. There exist ω-regular languages L such that L 6= L(A) for any deterministic Büchi automaton A.
Proof. Consider the language L over the alphabet Σ = {a, b} de�ned as
L = {α ∈ Σω | ∃ only a �nite number of occurences of the letter b in α}.
First we note that L is indeed an ω-regular language, for it is accepted by deterministic Muller automaton in
Figure 1, with equipped with acceptance component F = {{qa}}.

Figure 1 � An automaton on in�nite words over alphabet {a, b}.

Theorem 1 also implies the existence of a nondeterministic Büchi machine accepting the same language ;
explicitly, we can see the automaton in Figure 2 accepts L when we take acceptance component F = {{q1}}.
However δ(q0, a) = {q0, q1} and so the automaton below is nondeterministic.

Figure 2 � A nondeterministic Büchi automaton on in�nite words

Suppose, for contradiction, there exists a deterministic Büchi AB = (Q,Σ, δ, q0, F ) recognizing L. Since the
ω-word aω ∈ L, there is an accepting run σ by AB and some n1 < ω such that σ1 = (q0, ..., qn1

, ...), and qn1
∈ F .

The word an.b.aω ∈ L, so it is accepted also by AB , and as before we �nd qn2 ∈Inf(σ2)∩F where σ2 is the
accepting run in reading an1 .b.aω.
Continuing this reasoning, we can construct an accepting run on the ω-word β = an1 .b.an2 .b.....b.ank .b....) for
all k < ω, i.e. β has in�nitely many blocks ani .b, which is a contradiction.
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The above theorem o�ers an example of two di�erent acceptance conditions having di�erent expressive
power. We present the proof to illustrate the unavoidable limitations of deterministic Büchi, since this class is
of particular importance to ω-REG as we will see later.
Nonetheless, there exist other �nite state automata having exactly the same expressive power as deterministic
Muller and therefore recognize the class ω-REG :

Theorem 3. The following automata are equivalent in expressive power :
� deterministic Muller, Rabin, Streett, parity ;
� nondeterministic Büchi, Muller, Rabin, Streett, parity.

We refer to [4] for the de�nitions of Streett and parity automata and the proofs of the equivalencies. Such
proofs are generally algorithms to transform one type of machine into another.

The following de�nition, concerning a special type of Muller automaton, will be needed. In fact, this paper
show how this notion reappears in terms of Wagner's chain measures as well as its importance to results in
Barua [1].

De�nition 6. A Muller automaton AM is said to be full-table if for every F ∈ F , if there exists a superset
F ′ ⊇ F , then we must also have F ′ ∈ F .

The last automaton on ω-words we introduce is particularly illustrating of the hierarchies and complexity
measures discussed in this paper.

De�nition 7. A Rabin automaton AR is a �nite state automaton A = (Q,Σ, δ, q0,Ω)
where Q,Σ, δ, q0 are as de�ned previously, and additionally AR is equipped with the acceptance component

Ω = {(E1, F1), ..., (Ek, Fk)} for some k < ω, where Ei, Fi ⊆ Q for all i ≤ k.
Rabin acceptance is the condition that AR accepts a word α if and only if there exists a natural number i < ω
and a run σ on α passing in�nitely many times through the sets Fi and only �nitely many times through Ei.
Symbolically,

In(σ) ∩ Ei = ∅ ∧ In(σ) ∩ Fi 6= ∅ (8)

In section 3, we will see how the chain and superchain measures are compatible with another complexity
measure speci�c to Rabin automata (called the Rabin Index ) that counts the minimal number of pairs (Ei, Fi)
needed to recognize a language L ∈ ω-REG.

2.3 Topology and Descriptive Set Theory

We give here some basic background and de�nitions which will be used in later sections. Kechris's text [6]
is a useful resource if the reader is less familiar with topology and descriptive set theory.

Equipping the set Σ the discrete topology, we naturally then view Σω with induced product topology. A
compatible complete metric is given by d, where for α,β ∈ Σω,

d(α, β) =
1

2n
if α 6= β and n = min(i ∈ ω | α[i] 6= β[i]) andd(α, β) = 0 if α = β

The space Σω is countable, separable, and admits a basis of clopen sets : we �x a basis for τ by de�ning the
sets

Nw := {α ∈ Σω | w ∈ Σ∗, w v α} (9)

The topology thus generated is often known as the Cantor topology, but with a more automata-theoretic
�avor it is sometimes called the pre�x topology. (Σω, τ) is Polish and homeomorphic to the Cantor space 2ω in
which the topology is de�ned analogously for Σ = {0, 1}.

The Borel σ-algebra on a topological space (X, τ) is the smallest family of subsets of X containing the
open sets and closed by countable union, countable intersection, and complement. The Borel hierarchy is the
classi�cation into these sets based on their level of generation in the Borel σ-algebra. That is, for α a countable
ordinal we de�ne by trans�nite recursion the following pointclasses :

Σ0
1 := {U ⊆ X | U is open in X}

Π0
1 := {F ⊆ X | F is closed in X} = ¬Σ0

1

∆0
1 := Π0

1 ∩Σ0
1
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For 2 ≤ α ≤ ω1,

Σ0
α := {U ⊆ X | U =

⋃
n<ω

Vn where Vn ∈
⋃
γ<α

Π0
γ ∀n < ω}

Π0
α := {F ⊆ X | F =

⋂
n<ω

Un where Un ∈
⋃
γ<α

Σ0
γ ∀n < ω}

∆0
α := Π0

α ∩Σ0
α

We note the following properties :
� All classes are closed under �nite unions and �nite intersections.
� For all 1 ≤ α < ω1, Σ0

α and (Π0
α) are closed under countable union and intersection, respectively.

� The class ∆0
α is closed under complement

� For all 1 ≤ α < ω1, Σ0
α = ¬Π0

α

The next theorem, presented �rst in [2] and in [7], establishes where the class of ω-regular languages �ts into
the Borel σ-algebra. It is credited to Büchi and Landweber [2], and later Trachtenbrot (cf. [11]).

It is necessary to highlight that as there are 2ℵ0 Borelian subsets of Σω and only a countable number of
ω-regular languages, the class ω-REG strati�es only a small fragment of the Borel hierarchy. Therefore we need
to specify when we are considering this smaller class of Borel sets.

We will use Ω0
α
R
denote the pointclass Ω ∈ {Σ,Π,∆} whence restricted to the class ω-REG, i.e. :

Ω0
α
R

:= Ω0
α ∩ {L ⊆ Σω | L ∈ ω − REG}

Theorem 4. Let L be a language of in�nite words over a �nite alphabet Σ. If L is an ω-regular language, then
L is a ∆0

3 subset of Σω.

We have another characterization result, suggesting the importance of properties of the Gδ ω-regular lan-
guages to the entire class ω-REG.

Corollary 1. Let B(Ω) denote the Boolean Closure of a pointclass Ω. Then

ω−REG = B(Π0
2
R

) = B(Σ0
2
R

)

As mentioned in the introduction, the ω-regular languages admit have very nice topological interpretations :
for every Borel class of ω-regular languages, one can give a de�nition of this class in terms of the mode of
acceptance necessary to recognize languages of this class.

The table below summarizes the relevant results, linking the Borel complexity of the regular languages to
modes of acceptance of a deterministic �nite state automaton A = (Q,Σ, δ, q0, •). It is easily observable for
the open and closed languages how the complexity quanti�ers of an acceptance condition coincides with the
classical notion of de�nability of Borel sets in these classes. These results are proved in Landweber [7].

Borel Class Acceptance Component Acceptance Condition

Open (Σ0
1
R
) F ⊆ Q ∀i(δ(q0, α[i]) ∈ F

Closed (Π0
1
R
) F ⊆ Q ∃i(δ(q0, α[i]) ∈ F

Gδ (Π
0
2
R
) F ⊆ Q ∃ a run σ on α, In(σ) ∩ F 6= ∅

Fσ (Σ0
2
R
) F ⊆ P(Q) ∃ a run σ on α and ∃F ∈ F(In(α) ⊆ F )

ω-Regular (∆0
3
R
) F ⊆ P(Q) ∃ a run σ on α and ∃F ∈ F(In(α) = F )

Note that the above table gives representations with respect to the Cantor topology. There exist however
other topologies one can put on the space of languages of in�nite words, many have which been recently proved

8



to be polish.

For example, the Büchi topology τB de�nes the open sets of Σω to be the ω-regular sets� i.e. the sets in
∆0

3 for the Cantor topology. Since this topology is polish, the study of ω-languages classi�ed with respect to
the Büchi topology can potentially be enriched by classical descriptive set theory, yet may provide di�erent
automata-theory conclusions since the levels of the two resulting hierarchies do not coincide. These results are
done in [3].

3 The Wagner Hierarchy

By 1979, the works of Büchi, Hartmanis and Stearns, Landweber, Trachenbrot and Bardsin, Hossley, Wagner,
Staiger, and McNaughton (see [10], [5], [7], [12], [8]) e�ectively completed the study of �nite state automata
and their topological connection to certain fragments of the Borel hierarchy on the space Σω, the main results
of which we just saw.

Naturally, then, the study of the ω-regular languages looked for other possible measures by which to clas-
sify these sets. To this end, K. Wagner introduced the measures m+,m−, the chain measures and n+, n−, the
superchain measures. Roughly, the role of these measures is to consider the deterministic Muller automaton
recognizing some L ∈ ω−REG, and to look (respectively) at the maximal length of alternating sequences (the
chains) of sets of states, and then the maximal length of chains of chains (superchains).The alternating character
of chains is de�ned by if a set of states is considered accepting (positive) or rejecting (negative), relative to the
acceptance component F .

An important feature of these measures is that they are proved in [11] to be invariant of the speci�c auto-
mata accepting the language� if A and B recognize the same ω-regular language L, the maximal chains and
superchains of either automaton must be the same numbers m and n. De�ning then an order ≤ on ω-REG
based on these measures, we obtain the resulting equivalence classes which Wagner names the exact complexity
classes, denoted Cnm, D

n
m, and Enm. We will see that the entire class ω-REG is partitioned into these exact

classes, and furthermore that it is decidable at which level some ω-regular language resides. We include the
visual representation of Wagner's hierarchy on page 13.

Another way in which Wagner's hierarchy advanced the study of �nite state machine recognizable languages
of Σω was in its re�nement of the corresponding relativized Borel hierarchy, allowing for a �ner notion than
that provided by descriptive set theory of how "complicated" a language is.

Zooming out, we can also consider the downwards complexity classes presented in [11], denoted Ĝnm for
G ∈ {C,D,E}. Essentially, they contain languages "reducible" to the corresponding exact class. We look at
these generalized classes because of their equivalence with the low level Borel classes we looked at in section 1,
thus giving a familiar frame of reference in studying Wagner's classes as well as showing a compatibility between
complexity in terms of set-theoretic de�nability, and complexity in terms of structural, automata-theoretic pro-
perties.
As mentioned, this paper in particular will look at the class Ĉ1

2 , Wagner's equivalent to the Π0
2 or Gδ languages of

ω-REG. We give a proof of the equivalence, in one direction analyzing a Gδ regular language with the chain and
superchain measures. Doing so sheds light on the necessary properties (and limitations) of automata accepting
exactly this class. This interpretation will then be used to help present the main proof in [1], covered in section 4.

But �rst, we need to provide the necessary machinery for understanding this measure.

3.1 The Chain and Superchain measures

We begin by identifying the subsets of Q which are "practical" in the sense that they only contain states
which can potentially be visited by the automaton, otherwise called accessible, and that these states form loops
or cycles and thus could be seen over and over in an in�nite sequence of states (i.e., a run of the automaton).
We therefore de�ne two notions :

De�nition 8. Let A = (Q,Σ, δ, q0,F 4 be a �nite state automaton. A state q ∈ Q is called accessible if there
exists a word x ∈ Σ∗ such that δ(q0, x) = q.

Recalling some graph theory,

De�nition 9. Let G = (V,E) be a directed graph. A strongly connected set is a subset S ⊆ V such that for
any u, v ∈ S there exists a path in G from u to v and likewise from v to u.

4. We remark that this de�nition is not exclusive to automata on �nite or in�nite words, determinism, nor the mode of acceptance
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A strongly connected component S is a strongly connected set which is maximal ; i.e., there is no other
strongly connected set S′ such that S ( S′

De�nition 10. For a deterministic �nite automaton A = (Q,Σ, δ, q0,F) we de�ne the family of essential sets :

M(A) := {F ⊆ Q | F is a strongly connected component of Q} (10)

Intuitively, the name "essential" alludes to the property that these are sets of states which can be seen over
and over again (i.e. those with loops or cycles). They are sometimes called admissable sets, and in section 4 we
will see yet another characterization of them as sets of realizable cycles ([7]).

In particular we note the set Inf(σ) is an essential set for any run σ by a �nite state machine. The following
lemma outlines the nice properties of essential sets interpreted by language and automata-theoretic ideas as
pre�xes and intermediate transitions.

Lemma 1. S ∈M(A) if and only if there is q ∈ S and �nite words x, y ∈ Σ∗ such that

δ(q0, x) = δ(q, y) = q;

S = {δ(q, w) | w v y}

In fact, for any state q belonging to an essential set S one can �nd words x, y ∈ Σ∗ such that the above conditions
hold.

In other words, the essential sets are the sets of states such that if there is a cycle (q, q1, ..., qn, q) in A,
accessible from the start state q0, then the set {q, q1, ...qn} is essential. The essential sets are those which can
give rise to a run which is either accepting or rejecting since they will in�uence the set Inf(σ). We divide
the essential sets accordingly, based on the acceptance component F of a deterministic Muller automaton
A = (Q,Σ, δ, q0,F). 5

M+(A) := M(A) ∩ F

M−(A) := M(A) ∩ FC

From here, we can now look for chains of elements of M(A) : increasing (with respect to ⊆) sequences of
essential sets that alternate between accepting (M+(A) and rejecting (M−(A). Chains are distinguished by the
"polarity" of the innermost set :

De�nition 11. A positive chain (resp. negative chain) is a sequence F1 ⊆ F2 ⊆ ... ⊆ Fn for some n ∈ ω,
such that F1 ∈M+(A) (resp. F1 ∈M−(A)).

Now we focus our attention on the maximal lengths of chains, sorting the chains of A via the inductively
de�ned sets M+

m(A) and M−m(A) : for a set of states F ∈ Q, let S ∈ M+
m(A) (resp. M−m(A) if and only if F is

the last set of a positive chain (resp. negative chain) of length m.

M+
1 (A) := M+(A) M−1 (A) := M−(A)

We use Wagner's notation, m+(A) (resp. m−(A)) to denote the largest m < ω such that the set M+
m(A)

(resp. M−m(A)) is nonempty. By convention we let m+(A) (m−(A)) equal 0 in the case the above two sets are
empty.
We sometimes will abuse notation and write m+ or M+

m instead of m+, Mm when the automaton A is clear
from the context.
To see things symbolically :

De�nition 12. For natural number m ≥ 1,

M+
2m := {F ∈M−(A) | ∃F ′ ∈M+

2m−1 s.t. F ′ ⊆ F} M−2m := {F ∈M+(A) | ∃F ′ ∈M−2m−1 s.t. F ′ ⊆ F}
M+

2m+1 := {F ∈M+(A) | ∃F ′ ∈M+
2m s.t. F ′ ⊆ F} M−2m+1 := {F ∈M−(A) | ∃F ′ ∈M−2m s.t. F ′ ⊆ F}

And we let

m+(A) := max({m |M+
m 6= ∅} ∪ {0}) m−(A) := max({m |M−m 6= ∅} ∪ {0})

5. We do this without loss of generality by MacNaughton's theorem : any automaton accepting L ∈ ω-REG can be transformed
into deterministic Muller. However, we will later see that the invariance property of the chain measures renders this remark
inconsequential.
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The inductive construction of these sets together with the fact M(A) is a �nite set gives us a decidability
result :

Lemma 2. For any given A, a deterministic Muller automaton on ω-words, there exist algorithms to compute
m+(A) and m−(A).

In particular we refer the reader to [14] for an e�cient algorithm to compute the maximal positive chain
number m+(A).

The sets M±m have the following properties :

Lemma 3. 1. F ∈ M+
m ⇔ ∃F1, F2, ..., Fm ⊆ Q such that Fm = F , Fi ⊆ Fi+1, and Fi ∈ M+(M−) for

i ≤ m odd (even).

2. F ∈ M−m ⇔ ∃F1, F2, ..., Fm ⊆ Q such that Fm = F , Fi ⊆ Fi+1, and Fi ∈ M+(M−) for i ≤ m even
(odd).

3. For m even, M+
m ⊆M− and M−m ⊆M+

4. For m odd, M+
m ⊆M+ and M−m ⊆M−.

5. |m+ −m−| ≤ 1

6. For automaton A = (Q,Σ, δ, q0,F), m±(A) = m∓(AC) where AC = (Q,Σ, δ, q0,FC).

We now introduce the superchain measure. It is de�ned in a similar way as above, but instead of measuring
sequences of elements F ∈ M related by set inclusion, the superchains are alternating sequences of maximal
length chains� i.e., chains of chains. The superchains are ordered the relation of reachability :

De�nition 13. For a set of states Q and subsets F1, F2 ⊆ Q, a state q2 ∈ F2 is reachable from q1 ∈ F1 if and
only if there exists a �nite word w ∈ Σ∗ such that δ(q1, w) = q2.
We say the set F2 is reachable from F1 if ∃q2 ∈ F2 and ∃q1 ∈ F1 such thatq1 is reachable for q2. In particular,
when F1, F2 are essential sets, F2 is reachable from F1 if any q2 ∈ F2 is reachable from any q1 ∈ F1.
This relation is denoted F1 DA F2 (or F1 D F2 when A is clear from the context).

We build by induction on n the sets N+
n (A) and N−n (A), restricting our attention to chains of maximal

length.
From here on, we use m to denote the natural number m = max(m+(A),m−(A)).

N+
1 (A) := M+

m (A) N−1 (A) := M−m (A)

For n < ω, we de�ne sets of superchains :

N+
2n := {F ∈M−m (A) | ∃F ′ ∈ N+

2n−1 s.t. F ′ D F} N−2n := {F ∈M+
m (A) | ∃F ′ ∈ N−2n−1 s.t. F ′ D F}

N+
2n+1 := {F ∈M+

m (A) | ∃F ′ ∈ N+
2n s.t. F ′ D F} N−2n+1 := {F ∈M−m (A) | ∃F ′ ∈ N−2n s.t. F ′ D F}

We set

n+(A) := max({m | N+
n (A) 6= ∅} ∪ {0}) n−(A) := max({m | N−n (A) 6= ∅} ∪ {0})

I.e., n+ and n− are the maximal length of positive and negative superchains, respectively.
The following lemma will be used in later proofs and captures the interplay between the maximal length

chains and superchains :

Lemma 4. 1. m+(A) = m−(A) + 1 ⇔ n+(A) = 1 ∧ n−(A) = 0

2. m−(A) = m+(A) + 1 ⇔ n+(A) = 0 ∧ n−(A) = 1

3. m+(A) = m−(A) ⇔ n+(A), n−(A) ≥ 1

3.2 Exact complexity classes

Now that we have a grasp of what the measures m+(A),m−(A), n+(A), n−(A) actually count, we can begin
to investigate how ω-REG can be classi�ed with respect to these numbers.

To this end, we extract the pure structural (chain) properties by considering two languages to be equivalent
if they are equivalent by following ordering ≤ on ω regular languages U, V ⊆ Σω where for some for some �nite
state automata A, B, U = L(A) and V = L(B).

U ≤ V ⇔
m(A) < m(B) ∨ [m(A) = m(B)

∧ (n+(A) ≤ n+(B)) ∧ (n−(A) ≤ n−(B))]
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The order ≤ is clearly re�exive and transitive. We pose the natural equivalence relation ≡ on the ω-regular
subsets of Σω by letting U ≡ V ⇔ [U ≤ V ∧ V ≤ U ] ; the resulting equivalence classes are partially ordered by
≤.

These classes of ω-REG \ ≡ are the exact complexity classes we are interested in. They are given the names
Cnm, D

n
m, and E

n
m. On the next page is the visual representation of what we call the Wagner hierarchy. It

is interpreted as such : for two exact classes P,Q, if P and Q are connected and P is not higher than Q then
P ≤ Q. For example, we have C2

2 ≤ E2
2 ≤ D3

2.

Cnm := {L(A) | m(A) = m ∧ n+(A) = n− 1 ∧ n−(A) = n}

Dn
m := {L(A) | m(A) = m ∧ n+(A) = n ∧ n−(A) = n− 1}

Enm := {L(A) | m(A) = m ∧ n+(A) = n−(A) = n}

Note that we still have not seen that the measures m,n are indeed independent of the speci�c automaton
used, and so at this point we wonder if some ω-regular language L could reside in more than one of the
above classes. For example, if there were two di�erent automata A and B (on the same language Σ) such that
L = L(A) = L(B) butm(A) 6= m(B), the equivalence class of L(A) cannot be the same of L(B), though they
are both equal to L. We will show this cannot be the case.
We give some fairly immediate properties of the exact classes. Proofs are given in [11] and follow directly from
properties of the sets M±m, N

±
n .

Lemma 5. 1. For any ω-regular L, L ∈
⋃

1≤n,m<ω(Cnm ∪Dn
m ∪ Enm)

2. Cnm and Dn
m are dual classes for all m,n < ω : L ∈ Cnm ⇔ LC ∈ Dn

m

3. The classes Enm are closed under complementation : L ∈ Enm ⇔ LC ∈ Enm

To prove this hierarchy is proper, Wagner [11] constructs two languages V nm and Unm of ω-words over the
alphabet Σ = {0, 1}, and belonging respectively to Cnm and Dn

m. Once these languages are classi�ed, then, we
will present Wagner's proof that V nm cannot be in Dn

m. Since these are equivalence classes, if we show they are
not equal, then they are disjoint and the hierarchy is proper.

First, we need to see these sets are ω-regular and indeed belong to the desired classes. To this end we
provide the transition graph of a speci�c deterministic Muller automaton B = (QB, {0, 1}, δB, q10 ,FB). It is
pictured below in Figure 3.
We'll now de�ne the languages V nm and Unm.

In an e�ort to simplify notation, �rst let

−→
k := (10 ∪ 110 ∪ ... ∪ 1k0)

V nm :=
⋃

0≤v<n
1≤u≤m
v+ueven

[−→m∗.0]v.(−→m∗).[−−−→u− 1.(1u0)]ω (11)

In this case (n odd) we let Unm := (V nm)C .

For n even, we have an almost identical de�nition of Unm, yet note that the parity of u+ v has changed :

Unm :=
⋃

0≤v<n
1≤u≤m
v+uodd

[−→m∗.0]v.(−→m∗).[−−−→u− 1.(1u0)]ω (12)

Similarly, V nm := (Unm)C , whence n even.
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Figure 3 � The automaton B recognizing V nm for n odd.

Now we must de�ne a suitable acceptance component to ensure B to recognize V nm, for n odd ; the case for
n even is similar.
We set

FB = {{qv0 , ..., qvu} | 0 < u ≤ m ∧ 0 < v ≤ n ∧ u+ v odd}.
Observing some characteristics about the structure of B is also a way to develop a visual intuition for how

the chains and superchains of a language are observable in the structure of a �nite state automaton.
Example

Consider the set F1 = {q10 , q11}. Let σ be a run by B such that Inf(σ) = F1. Using the transition graph, we see
that the run σ could only arise from B reading a word of the form (10)ω, which is not in V nm. Correspondingly,
F1 is a rejecting cycle ; F1 ∈M−(B). On the other hand, F1 ⊆ {q10 , q11 , q13} ∈ F , so m−(B) ≥ 2.

The transition graph for B above visually organizes the chains and superchains : chains are captured by
the vertical columns each of height m ; as we just saw in the previous example, going up a level corresponds
to increasing the chain length. For v odd, the largest index u in essential set F = {qv0 , qv1 , ..., qvu} indicates that
F ∈M+

u (B) for u odd, and F ∈M−u (B) for u even. As 1 ≤ u ≤ m, m(B) = m.

Adding 1 to n+ or n− corresponds to the automaton moving one column to the right. The transitions between
columns labeled by 0 is observable in the de�nition (11) by the 0 in the factor (−→m∗.0)v ; each time the top index
v is increased by 1, the automaton must read another 0 from state δ(qv0 ,

−→m) = qv0 , and δ(qv0 , 0) = qv+1
0 (for

1 ≤ v ≤ n), hence the machine has moved to the right one column. The parity change in v gives the alternating
behavior of the superchain.

Note that not all runs by B on words in V nm will witness maximal chains and superchains ; the word
(10.110)ω ∈ V nm = L(B) is accepted by a run which sees only a length 2 negative chain. Providing a parti-
cular case of a run of B that realizes maximal chains and superchains is not crucial for the proof V nm ∈ Cnm,
since it su�ces to show there exists some �nite state Muller automaton capable of computing V nm.

However in the proof of Theorem 5 to follow, that V nm /∈ Dn
m, we need to show that for an arbitrary automa-

ton A recognizing V nm, L(A) /∈ Dn
m. As was mentioned after the de�nition of the exact complexity classes, we

haven't yet shown that any automaton equivalent to our particular B will have the same number of maximal
chains and superchains. Thus not only do we need to generalize the automata we work with in the proof, but we
will need a careful construction of an ω-word complex enough that a maximal length chains and superchains will
be realized by an automaton with su�cient expressive power. Speci�cally, since the di�erence between classes
Cnm and Dn

m is the number of superchains, we will need this "witness" word to force the any appropriately
powerful machine into running through a negative superchain length n.

Formalizing this discussion, from B of 3.2 we conclude :

Lemma 6. 1. V nm ∈ Cnm
2. Unm ∈ Dn

m

Proof. It was explained above how 3.2 su�ces as a proof. The construction of this speci�c automaton is credited
to Wagner [11].
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Theorem 5. V nm /∈ Dn
m for n odd

Proof. We treat the case where m is also odd, as Wagner does, but we focus on �lling in the details missing in
the original proof. Since V nm is indeed an ω-regular language, allowing us then to apply McNaughton's theorem
to take an arbitrary deterministic Muller automaton A = (Q, {0, 1}, δ, q0,F) such that L(A) = V nm.

Denote s = |Q| < ω.

We construct by recursion on m a �nite word wm, our so called "witness" word.

w1 := (11.0)s

w2 := (12.0.w1)s

...

wm := (1m.0.wm−1)s

Now we consider runs by A on the in�nite word (wm)ω. By the way the pre�xes (wm)ω have been de�ned,
the acceptance or rejection of a run will depend on the parity of m, so a run on (wωm) = (1m0.wm−1)ω = ... =
1m0.(1m−10.(....(120(10)s)s)..)s)ω, A must realize a chain of length m.
We'll need the following :

Claim 1. (wm)ω /∈ V nm for m odd.

Proof. We try to rule out possible candidates of words in V nm to show that (wm)ω can not possibly be one of
them. Let's call a word "good" if it is a member of V nm and of the form (1m.0.wm−1)ω.

The in�nite word (wm)ω = (1m.0.wm−1)ω has an in�nite number of factors 1m.0, so we must take u = m
in the de�nition of the language V nm. Accordingly, since m odd, the parameter v ∈ [0, n) must also be odd, and
any "good" word will be in the sublanguage :⋃

0<v<n
vodd

[−→m∗.0]v.(−→m∗).[−−−→m− 1.(1m)]ω

Since v 6= 0, a "good" word will always have some pre�x of the form (−→m∗.0). Then, no matter how many (�nite)
iterations of −→m, a "good" word either has consecutive 0's in its pre�x, or it begins with a 0. But by the de�nition
of wm, this can never be the case in the word (wm)ω.

Lastly, we remark that for m even, the word (wm)ω ∈ (−→m)∗.(
−−−→
m− 1.1m.0)ω, i.e. the language V nm when taking

v = 0 and u = m.

Since V nm = L(A), by the previous claim, we know a run σ by A on (wm)ω = (1m0.wm−1)ω will be rejecting.
Thus there exists some essential set F 1

m ∈ FC with In(σ) = F 1
m.

We wish to show that F 1
m ∈M−m(A). To do this, by Lemma 3, it su�ces to �nd essential sets F 1

1 , F
1
2 , ..., F

1
m−1

subsets of F 1
m such that Fi ⊆ Fi+1, and Fi ∈M+(A)[M−(A)] for i even [odd].

To get a better handle on elements of F 1
m we set q1 := δ(q0, wm) = δ(q0, (1

m0.wm−1)s). Because of the choice
of s ≥ |Q|, at some point when reading the word wm the automaton A will pass the same state q1. Let sm < s
denote this point.
Therefore,

q1 = δ(q0, (1
m0.wm−1)sm = δ(q1, (1

m0.wm−1)s−sm)

In other words, the states seen reading (1m0.wm−1)s−sm form a cycle around the state q1. By the choice of the
essential set F 1

m, and by Lemma 1, we can see that

F 1
m = {δ(q1, w) | w v (1m0.wm−1)s−sm}

Now we look for an essential accepting set (which will be denoted F 1
m−1 contained in F 1

m. Such a set would
be be composed of the transitions given by δ when A reads �nite pre�xes of a word in V nm (an accepting word),
and this word in turn necessarily a pre�x of wωm so to ensure F 1

m−1 ⊆ F 1
m.

Using the recursive construction of wm we note that we can rewrite wm as

wm = (1m0.wm−1)s

= (1m0.wm−1)s−1.(1m0).(wm−1)

= (1m0.wm−1)s−1.(1m0).(1m−10.wm−2)s
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Letting tm = (1m0wm−1)s−1.(1m0), and using the above claim, we �nd tm.(wm−1)ω ∈ V nm. Therefore, when A
reads tm.(w

ω
m−1 from start state q0, there is indeed an essential set F 1

m−1 ∈M+(A) consisting of states resulting
from transitions from q1 while reading pre�xes of wωm−1. These states are found more explicitly by using the
previous argument for wωm : the fact that |wm−1| ≥ s ≥ |Q|, and by the choice of q1 = δ(q0, wm), there is a
moment sm−1 < s such that

q1 = δ(q0, wm) = δ(q0, tm.(wm−1))

= δ(q0, tm.(1
m−10.wm−2)s)

= δ(q0, tm.(1
m−10.w

sm−1

m−2 )

= δ(q1, tm.(1
m−10.wm−2)s−sm−1)

Now we can apply similar reasoning to F 1
m−1 to see :

F 1
m−1 = {δ(q1, w) | w v (1m−10.wm−2)s−sm−1))}

From these �rst two iterations, we start to get a sense of the nested cycles originating at the state q1. By
de�nition, F 1

m−1 ⊆ F 1
m.

The decomposition wm = tm.(1
m−1.wm−2)s = tm.tm−1(1m−20.wm−3)s,

where we let tm−1 := (1m−10.wm−2)s−1.(1m−1) gives the next step of the proof.

q0 q1
(1m0.wm−1)sm

(1m0.wm−1)s−sm

(1m0.wm−1)s−sm−1

Iterating this argument until m = 1, we obtain

F 1
1 ⊆ F 1

2 ⊆ ... ⊆ F 1
m−1 ⊆ F 1

m (13)

Furthermore, F 1
i ∈M−(A) for i odd ; in particular we have F 1

1 ∈ FC and conclude that (13) is a negative chain
of A of length m, and so m−(A) ≥ m⇒ m ≥ m.
If m > m, then L(A) = V nm /∈ Dn

m and we are done.

So suppose not, m = m. Our goal is to now construct a negative superchain : using from the negative chain
(13) as our �rst element, we look for alternating positive/negative chains each of maximal length m = m. The
top index j of F ji is used to keep track of where we are along the superchain. Once we have found a collection

of n such chains (F ji )1≤i≤m, we then need to check that for all 1 ≤ j ≤ n, F j+1
i is reachable from F ji .

Assuming all this can be done, the existence of a negative superchain of length n then gives the result.
Construction of the superchain : We now consider runs by A on the word wm.0.(wm)ω.
Letting q2 := δ(q0, wm.0.wm), Since (wm).0.(wm)ω = (1m0.wm−1.0).(1m0wm−1)ω is not a word of V nm by the
claim, a run on (wm.0.wm)ω is rejecting. Thus we �nd an essential set F 2

m and a �nite word x such that

F 2
m = {δ(q0, w) | w v x}

After n− 2 more iterations of this argument we get the family :

{F ij | F ij ⊆ F ij+1 1 ≤ j < m}1≤i≤n (14)

where for i odd, (F ij )1≤j<m is a negative chain, and is a positive chain for i even. We conclude that there is a
negative superchain of length n in L(A) = V nm, as desired.

As the automaton A was arbitrary up to recognizing the language V nm, the above proof immediately gives
the following corollary stating the invariance property of the chain and superchain measures.

Corollary 2. For any two automata A, B recognizing a language L, m(A) = m(B), n+(A) = n−(B), and
n−(A) = n−(B).

3.3 Downwards Complexity Classes and their Topological Interpretations

Coarser than the exact complexity classes are the "downward" complexity classes, still de�ned by the same
measures. The following de�nitions of, and subsequent lemmas pertaining to, these classes put into perspective
the precision of the exact Wagner hierarchy in comparison with the topological correspondences we have seen.
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Ĉnm := {L(A) | max((m+(A),m−(A)) < m) ∨ ((m+(A),m−(A)) = m) ∧ n+(A) ≤ n− 1)}

D̂n
m := {L(A) | max((m+(A),m−(A)) < m) ∨ ((m+(A),m−(A)) = m) ∧ n−(A) ≤ n− 1)}

Ênm := {L(A) | max((m+(A),m−(A)) < m) ∨ ((m+(A),m−(A)) = m) ∧ n+(A) ≤ n ∧ n−(A) ≤ n)}

Recalling the order ≤ we can further characterize these classes :

Lemma 7. 1. L ∈ Ĉnm ⇔ LC ∈ D̂n
m

2. L ∈ Ĝnm ⇔ ∃U(U ∈ Gnm ∧ L ≤ U) for G ∈ {D,C,E}

Roughly, we can view the downwards classes as those ω-regular languages which are less complex than a
language belonging to the corresponding exact class. The above classes have topological analogues ; the proofs
have been done by Wagner in [13].

Theorem 6. 1. Σ0
1
R

= Ĉ2
1

2. Π0
1
R

= D̂2
1

3. Π0
2
R

= Ĉ1
2

4. Σ0
2
R

= D̂1
2

5. ∆0
2
R

=
⋃∞
n=1(Ĉn1 ∪ D̂n

1 )

We give the proof of (3) because of the role Π0
2 languages play in [1].

The next lemma gathers a handful of equivalent representations of a Gδ ω-regular language, and so will be used
in proving Theorem 5.3. or we can make use of the following notions :

Lemma 8. The following are logically equivalent for ω-Regular languages L :

1. L ∈ Π0
2 ;

2. L is recognized by a deterministic Büchi automaton ;

3. L is recognized by a full table Muller automaton ;

4. L =
−→
X for some X ⊆ Σω, X ∈ REG.

Proof (Theorem 6.3). Supposing L ∈ Ĉ1
2 , we must consider the possible values of m and n± for a deterministic

Muller automaton A such that L(A) = L.

Case I :
Suppose m < 2. The conclusion is trivial for m = 0, so let m = 1. Then A has any chain, positive or

negative, being at most length 1. This implies the sets M+(A) and M−(A) are incomparable in the sense that
∀F, F ′ ∈ M+,M− respectively, we never have F ⊆ F ′ or F ′ ⊆ F . In particular, no accepting is contained in a
rejecting set, hence A is full-table, so L(A) ∈ Π0

2.
Case II :

Suppose now m = 2, requiring n+ ≤ 0. This means the deterministic Muller automaton A has either a
positive or a negative chain (or both) of length 2, yet has no positive superchain.
We consider further subcases :
Case II.i

If m = m+ = m− = 2, Lemma 4.3 implies n+, n− ≥ 1, but that is incompatible with L ∈ Ĉ1
2 by de�nition.

Case II.ii
Suppose it is a positive chain of A which realizes the maximal chain length, and that m− = 1. Note that by

Lemma 3.5 m− cannot be 0. Using Lemma 4.2, n+ = 1 and n− = 0, so again we do not need to consider this
case.
Case II.iii

By elimination we necessarily have that if m = 2 then m+ = 1, m− = 2, and Lemma 4.1 gives that n+ = 0
and n− = 1.

The values of m+,m−, and n+ in this case imply that A is full-table Muller. In fact, we arrive at this
conclusion just by requiring the maximal length of a positive chain be 1, as this implies that no accepting set is
subsumed by rejecting one. Thus L(A) ∈ Π0

2. Note that when m > m+, as in this case, n+ is necessarily equal to
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0 by Lemma 4.2 so we are still within the de�nition of Ĉ1
2 . Another small observation is that that Gδ ω-regular

languages can still have negative 2-chains ; an easy example is the language K := {α ∈ {a, b}ω | α contains an
in�nite number of occurrences of the letter a}.

Furthermore, no positive superchains can exist since n+, n− measure only superchains of chains of maximal
length m ; having no positive chain of maximal length we could not hope to �nd a positive superchain.

The converse is simpler : given L ∈ Π0
2
R
, Lemma 9 gives that L = L(A) for deterministic Büchi or full-

table Muller automata. We take the latter characterization to see that m+(A) is necessarily 1 or 0, implying

m−(A) ≤ 2, thus L(A) ∈ Ĉ1
2 .

3.4 Rabin Index

In this section we will brie�y introduce another measure of complexity on the ω-regular languages : the
Rabin index. However, unlike the chain measure, this measure is speci�c to Rabin automata de�ned in the
introduction. One can begin to draw connections between this index and the notion of a di�erence hierarchy�
this will be made explicit in section 4. We de�ne the Rabin index of an ω-regular set as the minimal number
of sets (Ei, Fi) needed in the acceptance component Ω of a Rabin automaton recognizing the language (such an
automaton always exists due to Rabin automata having equivalent expressive power as Muller automata). For
an example of how this measure is taken, consider the transformation from a deterministic Büchi automaton
AB = (Q,Σ, δ, q0, F ) into a determinstic Rabin AR. Recalling the Büchi condition (2), it is easy to see that
simply setting AR = (Q,Σ, δ, q0, {(∅, F )}) de�nes an equivalent Rabin automaton accepting L(AB). We thus
give this language the Rabin index 1.

Denote by IR(L) the Rabin Index of L ∈ ω-REG.
Symbolically,

De�nition 14. IR(L) := min{m | ∃AR = (Q,Σ, δ, q0,Ω) s.t. |Ω| = m ∧ L(AR) = L}

Where Ω ⊆ P(Q)× P(Q) and
L(A) = {α ∈ Σω | ∃σ a run on α s.t. In(σ) ∩ Ei = ∅ ∧ In(σ) ∩ Fi 6= ∅ for some 1 ≤ i ≤ m}

Recalling that the downwards equivalence classes have very nice topological interpretations, Wagner has
employed topological methods to prove the following result [11].

Wagner proves the following correspondance between maximal positive chains (m+) and the Rabin Index.

Theorem 7. (IR/ m+ correspondence)

IR(L(A)) = b(m
+(A) + 1

2
)c 6

In fact, [14] shows that given AM a deterministic Muller automaton, one can compute in polynomial time
IR(L(AR)).

3.5 Decidability

We brie�y include relevant decidability and computability results.

Theorem 8. � Given an ω-regular language L and a �nite state automaton A such that L = L(A), there
is an algorithm for determining at which level L resides in the Borel hierarchy 7

� Given a �nite state automaton A on ω-words over Σ, IR(L(A)) is computable.

4 Di�erence Hierarchy of ∆0
3

Let us consider again the Borel subsets of a separable, completely metrizable space, and in particular the
classes ∆0

α, also called the "ambiguous classes" .
We have just seen how Wagner's hierarchy is a re�nement of this fragment of the Borel sets of P(Σω) ∩ ω-

REG ; a result by Hausdor� and Kuratowski gives another re�nement, but of the larger more general class ∆0
3 :

the di�erence hierarchy. Roughly speaking, it gives an order on the ∆0
3 subsets corresponding to how many Gδ

(or Π0
2) subsets of which the given ∆0

3 set is formed. See [6] for more.
First, let us de�ne the levels constituting the di�erence hierarchy :

6. bkc denotes largest natural number less than k.
7. relativized to the ω-regular sets of P(Σω)
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De�nition 15. For a pointclass Ω of subsets of Σω, let the class Dn(Ω) be de�ned as follows :

L ∈ Dn(Ω) ⇔ L = (L1 − L2) + (L3 − L4) + ...± Ln
where Li ∈ Ω ∀i ≤ n,
and L1 ⊇ L2 ⊇ ... ⊇ Ln

Theorem 9. [6] Let X be a completely metrizable, separable topological space. Then for any countable non null
ordinal α, we have :

∆0
α+1 =

⋃
1≤α<ω1

Dn(Π0
2) (15)

As there are continuum many Borel sets belonging to the class ∆0
3, and only countably many ω-regular

languages, we wonder what happens when we relativize (15) to just those ∆0
3 subsets computable by �nite state

automata (the class ω-REG).
Similar to Theorem 9, Barua [1] has de�ned a di�erence hierarchy on the ω-regular languages in terms of ω-

regular Gδ languages, also characterized as being those languages computable by deterministic Büchi automata
by Lemma 9. Let us call this class the "Büchi Gδ's".
Barua constructs the automata theoretic analogue of (15) in the following way : we de�ne the class Dn as in
De�nition 12, yet we take Ω to be the class of regular Gδ languages over Σ. The �rst portion of [1] is dedicated
to proving the following :

Since any ω-regular language L is a ∆0
3 subset of Σω, we can conclude that L resides in some level Dn in

(15), and that L is a union of di�erences of n Π0
2 or Gδ sets.

What is not immediate, however, was if this n coincided with the hierarchy
⋃
n<ω Dn.

Barua was �rst to gave a positive answer to this in [1] for the case n ≥ 2, and we present this proof in the
following section, establishing that indeed :

DRn = Dn (16)

4.1 Di�erence Hierarchy of Büchi Gδs

As in the beginning of this section, we de�ne the levels Dn of a di�erence hierarchy on ω-REG :

L ∈ Dn ⇔ L =
⋃

(Gi −Gi+1) (17)

The following is due to Barua [1]. It allows us to completely characterize ω-REG with the levels de�ned above.

Theorem 10. The following are equivalent for L ⊆ Σω :

1. L is ω-regular

2. L is a �nite union of di�erences of Büchi Gδ languages

3. L is a �nite disjoint union of di�erences of Büchi Gδ languages

4. There exists a decreasing sequence (Gi)0≤i≤n with Gi ⊇ Gi+1 and Gi is Büchi Gδ for all 0 ≤ i ≤ n such
that

L =
⋃

0≤i≤n
ieven

(Gi −Gi+1) (18)

We brie�y sketch a proof of the implication (1)⇒ (4) is done by showing the class B of languages admitting
a representation (18) is a Boolean algebra containing the the Büchi Gδ sets. Given that these are exactly the

class Π0
2
R
, Corollary 1 implies ω-REG ⊆ B. It is not complicated to show B is closed under complement and

�nite union. The details can be found in [1].
The above theorem allows us to conclude

Corollary 3. ω-REG =
⋃
n<ω Dn

Recalling notation, let DRn denote the class Dn(Π0
2) restricted to only the ω-regular sets. As we just saw,

DRn = Dn ∩
⋃
n<ω

Dn

What is now left to be investigated is if for each n < ω, the levels DR
n and Dn are the same. In other words,

for a given L ∈ ω-REG, can the length of the sequence of Gδ sets�of which L is the union of di�erences�the
same, whether or not we restrict our attention to the ω-regular Gδ ?
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Theorem 11. Let Dn denote the di�erence hierarchy of ω-REG given in terms of Buchi Gδ languages, and let
DRn denote the Hausdor�-Kuratowski di�erence hierarchy of ∆0

3 ω-Regular sets. Then for each n,

DRn = Dn (19)

Clearly, Dn ⊆ DRn , therefore we will prove

L ∈ DRn ⇒ L ∈ Dn (20)

The following lemma is quite useful. Note that it is not immediate because the acceptance components are
families of subsets from the same state set Q.

Lemma 9. Let L1 and L2 be two languages in ω-REG over the same alphabet Σ, and suppose L1 ⊆ L2. Then
there two acceptance components F∞,F∈ and a �nite state automaton Ai = (Q,Σ, δ, q0,F〉) where Fi ⊆ P(Q)
for i ∈ {1, 2} such that L1 = L(A1), L2 = L(A2), and F1 ⊆ F2.

Proof. The goal is to construct a product automaton from the deterministic Muller automata B1 and B2 accepting
ω-regular languages L1 and L2 respectively.
Let B1 = (Q1,Σ, δ1, q1,G1) and B2 = (Q2,Σ, δ2, q1,G2).
We de�ne Ai = (Q,Σ, δ, q0,Fi as such : 8

� Q := Q1 ×Q2

� q0 := (q1, q2)
� δ((p, q), a) := (δ1(p, a), δ2(q, a) where p ∈ Q1, q ∈ Q2, and a ∈ Σ
� F1 := {F ⊆ Q1 ×Q2 | π1(F ) ∈ G1 ∧ π2(F ) ∈ G2}
� F2 := {F ⊆ Q1 ×Q2 | π2(F ) ∈ G2

E�ectively, we have that Ai recognizes Li for i ∈ {1, 2} and F1 ⊆ F2.

4.2 Cyclic closures

Instead of using Wagner's same notion of essential sets (strongly connected components) to investigate
ω-REG, Barua generalizes techniques applied by Landweber in [7], in which Landweber proved the result of
Theorem 12 for n = 1 (Theorem 4.2 of [7] ). The speci�c statement of the result will be given by Theorem 13.
In fact, this particular case is equivalent to the characterization of ω-regular Π0

2 languages given in Lemma 6 :
D1 = DR1 implies that the class of Büchi Gδ's (D1) is exactly the class of ω-regular Π0

2 subsets of Σω (DR1 ).

The proof of the correspondance for n ≥ 2 relies upon an inductive construction of acceptance components
Fi such that equipping a �nite state Muller automaton with Fi produces a Büchi Gδ language. From there, we
can improve a separation-like theorem that will conclude Theorem 11.

Theorem 12. [7] An language L ⊆ Σω is Gδ if and only if there exists a language X ⊆ Σ∗ such that α ∈ L if
and only if there exist �nite words x1 v x2 v ...xi v ... such that xi ∈ X and x[i] v α for all i < ω.

Primarily, Barua de�nes the operation of taking the cyclic closure of an acceptance component F ⊆ P(Q).
In this subsection we de�ne this operation, give some of its properties (namely, an analogue of Lemma 6.3),
and see how it operates in the proof of Theorem 12. In particular, cyclic closures will in�uence the algorithms
promised by the decidability results of Section 4.3. We now look at a theorem necessary for proving the level-
correspondance between DR

n and Dn. It will be used to prove a sort of automata-theoretic separation theorem
that will complete Theorem 11. A small remark :

We are interested in presenting the proof of this theorem, due to [1], since it extends the characterization(s)
given in Lemma 9. Then recalling that ω-REG is the Boolean closure of the Büchi Gδ languages, the proof to
follow provides an instance of how an automata-theoretic property of a certain class of subsets of Σω can be
used to establish a sort of regularity property of the class's Boolean closure. The class in question (Π0

2) having
a topological correspondance, we could wonder if similar techniques can be applied with respect to a di�erent
Polish topology such as those in [3].

As in the beginning of section 3.1, to investigate the language accepted by a �nite state machine we �rst
identify which subsets F ⊆ Q are "useful", in the sense that they could be visited in�nitely often during a run.
Speci�cally, we look for realizable cycles.

In the following de�nitions we �x deterministic Muller automaton A = (Q,Σ, δ, q0,F).

8. the automaton Ai is technically considered one machine ; the index i is to keep track of which acceptance component with
which we equip it
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De�nition 16. Let q ∈ Q and w ∈ Σ∗ denote by Q[q, w] the set of intermediate transitions :

Q[q, w] := {δ(q, w[i]) | 0 ≤ i ≤ |w|} (21)

Fixing our attention on loops :

De�nition 17. For q ∈ Q, the set of realizable cycles (noted Cq) is the set of Q[q, w] such that there is a
cycle around q labeled by the word w. Symbolically,

Cq := {Q(q, w) | δ(q, w) = q} (22)

Note that Cq is an essential set. Visually we can think of the sets Cq as in the �gure below.

Let us now see the operation F 7→ F̂ , called the cyclic closure operation.

De�nition 18. For F ⊆ P(Q), the cyclic closure F̂ is the set

F̂ := {F1 ∪ F2 | ∃q ∈ Q s.t.F1 ∈ F ∩ Cq ∧ F2 ∈ Cq}

The intuition behind the cyclic closure is that it collects those essential sets (F ∈M(A)) that contain some
accepting set F ′ ∈ M+(A). It is a sort of way to do a "one step extension" to a language di�erent than L(A),
yet still keeping track of L(A). If no such proper extension exists, we can de�ne a new class of Muller automata,
and we will show that the properties of this class are tightly related to others we have already seen.

De�nition 19. A Muller automaton A = (Q,Σ, δ, q0,F) is cycle-closed if the cyclic closure F̂ is contained
in F .

Indeed, the above is equivalent to the characterizations from Lemma 9 : suppose there is some F ∈ F̂ such
that F ∈ FC ; by de�nition of F̂ , F = F1 ∪ F2 where for some q ∈ Q, F1 ∈ Aq ∩ F . Then F1 is an accepting

set contained in a rejecting set, and A is not full-table. Conversely, if F̂ ⊆ F , the remark after De�nition 18
quickly implies all supersets of accepting sets are necessarily accepting.
We can then relativize Lemma 9 to our new de�nitions :

Theorem 13. Let L ⊆ Σω be an ω-regular language ; L = L(A) for some �nite state deterministic Muller A.
If A is cycle closed, then L(A) is Büchi Gδ.

Here is a rough proof : consider some �nite state machine which is not cycle closed, say B = (Q,Σ, δ, q0,F
with F  F̂ . If we apply Wagner's chain measure, we can identify F ∈ F̂ \ F as a set in M+

2 . Therefore,

m+(B) ≥ 2. In the proof of Theorem 5 we saw that any language in the downwards class Ĉ1
2 cannot have

m+(B) = 2 so we can conclude F̂ \ F 6= ∅ ⇒ L(B) /∈ Π0
2. However, Theorem 13 says that if we replace

acceptance component F of We now look at the covering-like theorem and its proof, where we will see the
inductive de�nition of a family Fn of acceptance components constructed in such a way to assure the "covering"
we want can be done by Büchi Gδs.
To prove the main theorem of the next section we need a technical lemma about cyclic closures ; the proof is
found in [1].

Lemma 10. The operation F 7→ F̂ preserves set inclusion and is idempotent. I.e., for F ,G ⊆ P(Q),

1. F ⊆ G ⇒ F̂ ⊆ Ĝ

2.
̂̂F = F̂

4.3 The Main Results

Theorem 14. Let K,L ⊂ Σω be two ω-regular languages over a �nite alphabet Σ. Suppose there is a decreasing
sequence (Gi)0≤i≤n of subsets of Π0

2(Σω), satisfying the following :

1. K ⊆ G0

2. Gi ∩ L ⊆ Gi+1 for i < n, i even

3. Gi ∩K ⊆ Gi+1 for i < n, i odd

4. Gn ∩ L = ∅ if n even, and Gn ∩K = ∅ if n odd

Then there is a decreasing sequence (Hi)0≤i≤n of Büchi Gδ sets also satisfying (1) - (4).
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Démonstration. We will consider the case n is even ; when n odd the proof is similar. Given n+1 nested decrea-
sing Gδ subsets satisfying (1)-(4), we show that there is an sequence of equal length with the same properties,
yet all sets can actually be taken to be Büchi Gδ.
Applying Lemma 7 with L1 = L and L2 = KC , we get two acceptance components GL and GK and a deter-
ministic Muller automaton AX = (Q,Σ, δ, q0,GX) where X ∈ {L,K} such that L = L(AL) and K = L(AK).
Moreover, GL∩GK = ∅, and n being even, Gn∩L = ∅. We now construct a family of acceptance components Fi
for 0 ≤ i ≤ n. The idea is that these components will generate respectively the sequence of languages (Hi)0≤i≤n,
and more importantly, they will each be cyclic closures.
First, let

F0 := ĜK
For i ≤ n and i odd,

Fi := ̂Fi−1 ∩ GL
For i ≤ n and i even,

Fi := ̂Fi−1 ∩ GK
We can think of this construction as starting from the essential sets containing one of AK 's accepting sets as a
subset, and at the next step we consider essential sets containing the F ∈ F0 which are accepting for AL.

LetHi be the ω-regular language over Σ which is recognized by the deterministic MullerAi = (Q,Σ, δ, q0,Fi).
A small detail : the n+ 1 automata Ai and the two AL, AK are essentially di�erent versions of the same ma-
chine, working with the same state set Q and following the same transition fuction δ with initial state q0, yet
the decision procedure of the automaton will obviously vary depending upon the acceptance component.

We now verify the sequence (Hi)0≤i≤n satis�es the desired properties :

1. that each language Hi is Büchi Gδ is given by Theorem 14.

2. Lemma 11.1 gives that Fi+1 ⊆ Fi, and therefore Hi+1 ⊆ Hi for 0 ≤ i < n.

3. K ⊆ H0 by de�nition of F0.

4. For i < n, i odd, Hi ∩ K ⊆ Hi+1 : Since Hi is generated by Fi = F̂i−1 ∩ FL, the language Hi ∩ K is

generated by Fi ∩ FL ⊆ F̂i ∩ FK , hence by Lemma 11.1 again Hi ∩K ⊆ Hi+1.

5. For i < n, i even, similar reasoning as (4) above gives Hi ∩ L ⊆ Hi+1.

6. Hn ∩ L = ∅ For this to hold, it su�ces to show Fn ∩ FL = ∅. Verifying this turns out to be the most
technical part of the proof, and so we refer the reader to [1] for the details.

This shows family of Büchi Gδs (Hi)0≤i≤n veri�es conditions (1)-(4) of the statement of the theorem.

We can prove the following "separation" theorem.

Theorem 15. Let K and L be two ω-regular languages over Σ such that K ∩ L = ∅. Suppose there exists a
decreasing sequence of Gδ subsets of Σω, G0 ⊇ ... ⊇ Gn such that

⋃
0≤i≤n
ieven

(Gi−Gi+1) 9 separates K from L, i.e.

K ⊆
⋃

0≤i≤n
ieven

(Gi −Gi+1) ∧ [
⋃

0≤i≤n
ieven

(Gi −Gi+1)] ∩ L = ∅ (23)

Then there is a decreasing sequence of Büchi Gδs, H0 ⊇ ... ⊇ Hn, such that
⋃

0≤i≤n
ieven

(Hi −Hi+1) separates K

from L.

Proof. One can check that sequence(Gi)0≤i≤n satis�es the 4 conditions of Theorem 15, hence we obtain a family
of Büchi Gδs (Hi)0≤i≤n with the same properties. Then the set

⋃
0≤i≤n
ieven

(Hi−Hi+1) also separates K from L.

We are �nally ready to prove (20) from Theorem 12. We restate it here for practicality.

Theorem 16 (Theorem 12, reformulation). Suppose L is an ω-regular language over Σ such that L ∈ DRn+1,
i.e. L =

⋃
0≤i≤n
ieven

(Gi −Gi+1) for a decreasing sequence of Gδ subsets of Σω.Then there is a decreasing sequence

of Büchi Gδ languages over Σ (Hi)0≤i≤n such that L =
⋃

0≤i≤n
ieven

(Hi −Hi+1), and thus L ∈ Dn+1.

Proof. The existence of the family (Hi)0≤i≤n follows from the separation theorem, taking L and LC as the
disjoint ω-regular languages (recall the class ω-REG is closed by complementation).
Then L =

⋃
0≤i≤n
ieven

(Hi −Hi+1), and so

L ∈ DRn+1 ⇒ L ∈ Dn+1

This completes the proof.

9. when n is even we take Gn+1 = ∅
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4.3.1 Decidability ; Complexity of Muller automata

We end with the decidability results. As we have seen, a Muller automaton A accepts a Gδ ω-regular lan-
guage is full table, so we associate the level D1 with these Muller automata. Since a language in the class D2

(languages L which can be written as L = L1 − L2, L1 ⊇ L2)is strictly more complex than the Gδ languages,
yet still ω-regular (and thus in ∆0

3), there exists a deterministic Muller automaton B accepting this language.
Consequently, we can say B is more complex than A� in this way Barua easily de�nes a hierarchy on Muller
automata.
The rank of complexity of a Muller automaton in this sense of Barua is decidable : the proofs of Theorem 14
and 15 implicitly give the necessary algorithm.

In [1] these complexity classes are denoted byMn and are de�ned on Muller automata A according to the
rank of the language recognized in the di�erence hierarchy :

Mn := {A | L(A) ∈ Dn}

Theorem 17. Given a deterministic Muller automaton A and some n < ω, there is an algorithm for deciding
whether A ∈Mn.

Corollary 4. Given an ω-regular language L ⊆ Σω, it is decidable at which n L resides in the Hausdor�

Kuratowski di�erence hierarchy for ∆0
3
R
.

5 Conclusion

The purpose of this research project was to investigate compatible frameworks for determining the com-
plexity of in�nite sequences over a �nite set. Speci�cally, we saw how the chain and superchain measures are a
pure structural gauge on the class of ω-regular languages, i.e. they are invariants of the ω regular subsets of Σω

. It is one of the �nest hierarchies one can put on ω-REG. We took Wagner's classi�cation results and tried to
relate them to the set theoretic results about classes of languages as de�ned by di�erent automata.

The theme of alternation observable in Wagner's measures is continued in looking at the connection between
the Hausdor� Kuratowski di�erence hierarchy of ∆0

3 sets, �rst done by Barua in [1], the other main paper this
project focused on. There, we saw a similar di�erence hierarchy can be de�ned on ω-REG. Since the ω-regular
∆0

3 subsets do not nearly exhaust the entire class ∆0
3, it is not immediate that we have level equivalence between

Barua's hierarchy and the relativized Hausdor�-Kuratowski one, but using automata-theoretic properties of the
generating class of ω-REG (the Büchi Gδs) Barua was able to extend a result done by Landweber almost 20
years prior.

One advantage of working with �nite state machines was that many classi�cation questions became deci-
dable, and there has also been a lot of work done in automata theory analyzing the e�ciency of the necessarily
terminating algorithms. Thus in some cases, we can consider the theory of �nite state automata on in�nite
languages as bridging classical results modern applications.

The writer would like to thank Olivier Finkel for taking time to direct in this research project.
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