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1 Introduction

In the theory of languages of infinite words and the finite state automata capable of recognizing them, the
cornerstone was set in 1960 by J.R. Biichi [10]. Studying the decidability of the fragment of second order logic
known as Monadic Second Order Logic (MSO1), Biichi proposed a finite state, nondeterministic automaton ha-
ving a certain criteria by which this machine would accept or reject infinite sequences of symbols, or rather words
over some finite set. With further investigation, the sets of infinite sequences accepted by a Biichi automaton—
languages— formed a proper class in the set of all languages of infinite words over a fixed finite alphabet : these
are now known as the w-Regular or w-Rational languages (w-REG).

[11]

The properties of this class became then of primary interest in automata theory, formal language theory, and
theoretical computer science, having applications in the latter field especially for the study of nonterminating
systems and programming languages. Other authors in these fields such as McNaughton, Muller, Landweber,
and Kurt Wagner ([8], [9], [7], [11]) soon expanded upon Biichi’s work. Of particular interest were the proposed
variants of Biichi’s initial automaton construction, such as more complex or restrictive acceptance conditions,
or requiring an automaton be deterministic or not.

It was observed that different modes of acceptance could directly influenced the class of languages an
automaton could accept, and this pattern then raised interest as to the connection between other properties
of a class of languages (for example, the topology complexity) and the complexity and/or determinancy of an
automaton’s acceptance criterion.

It was found that some modes of acceptance were strictly weaker than others, and so defined proper subclasses
of w-REG, although many possible modes recognizing the entire class of w-regular languages have been shown to
be equivalent. In particular, it is a well known result that the class of languages accepted by deterministic Biichi
automata defines a strictly smaller class of languages than accepted by nondeterministic Biichi— the latter
class is equivalent to the entire class w-REG. Furthermore, we have that nondeterministic and determinstic
Rabin, Streett, Muller, and parity automata also accept exactly w-REG ; [4] covers the definitions of these other
automata and the associated transformations proving their equivalency.

A paper by Landweber [7] looked at six subclasses of w-REG as defined by an automaton’s mode of ac-
ceptance. Viewing the space of infinite words over a finite alphabet as homeomorphic to the space of infinite
binary sequences (2), a reasonable approach to characterize these classes was to employ classical methods from
descriptive set theory so to analyze the topological complexity of the w languages. This turned out to be quite
fruitful : there exist direct correspondences between automata-theoretic notions of acceptance and low classes
of the Borel hierarchy. For example, the proper subclass of languages accepted by deterministic Biichi machines
coincided with the I1Y or G5 w-regular languages, and that the boolean closure of this class was exactly the class
w-REG. In other words, there is a tight correlation between ascension in the Borel hierarchy on P(X¥) (w—REG
and the act of increasing the complexity of acceptance conditions for an automata.

The intersection between automata and descriptive set theory is more readily observable by an example :

In descriptive set theory, for a finite set A of natural numbers, we consider the usual product of discrete
topologies on the space A% of infinite sequences of elements from A. An open set for this topology, say U C A¥,
is characterized by having a definition using only existential quantification : * € U < 3i € N such that z[i] € U,
where x[i] denotes the initial segment of length ¢ of the infinite sequence z € A¥.

Switching frames of reference, we might characterize an open w-regular language L C A“ over finite alphabet A
by way of a finite state automaton A which recognizes or accepts a word x if and only if there exists a natural
number i such that the prefix z[i] € A? belongs to the finitary language V' ! over alphabet A. The language L
thus admits the expression L = V.A“; any word of L is an infinite length word having some prefix in V.

1. requiring also V' be calculable by a finite state machine on finite words



In light of these correspondences, the study of the w- regular languages gained traction by using classical
results and techniques from descriptive set theory, such as the notion of Wadge reducibility and difference
hierarchies of the ambiguous Borel classes (AY for o > 1 a countable ordinal).

In this paper we intend to present some of these findings concerning the various hierarchies with which one
can classify the w-Regular languages. We look beyond the descriptive set theory measures of complexity and
introduce the Wagner hierarchy, induced by the chain and superchain measures, and are shown in [11] to be
invariant of the specific automaton used to recognize a language. The proof we present from [11] in section 3 of
this paper demonstrates this invariance property.

The other pertinence of studying Wagner’s measures is that the resulting hierarchy is a proper refinement of
the Borel classes of P(X“) occupied by the w-regular languages.

After looking at the so called exzact complexity classes, we will give another measure Wagner proposes in
[11] which has an easy correspondance with the chain measures. This other measure, called the Rabin Index,
is different than the chain measure in that it does not enjoy the same sort of invariant properties, and instead
looks at properties of one type of automaton— a Rabin automaton, defined by Michael Rabin in his 1969 paper
looking at the decidability of second order theories. We look at the complexity measure, the Rabin Index, on
these machines to highlight alternating nature exhibited by the w-regular languages.

If (as in the case of the chain measure but not necessarily the Rabin index) this family of conditions is
also descending and linearly ordered by set inclusion, the language defined can thus be expressed as a union of
differences. This is to say we can write a language L as

L= (Ll — Lg) JULs—-L4U..L,_1UL, where Ly DLy >..DL,_120L,

Visually, L can be pictured as the shaded parts of the target as below.

These observations will lead us naturally to our study of difference hierarchies.

In 1992, work by Rana Barua appropriates the classical result of Hausdorff and Kuratowski about the A%
difference hierarchy, defining an automata-based hierarchy on w-REG : roughly speaking, we place an w-regular
language in level n of Barua’s hierarchy if it is the union of pairwise differences of finite, nested, decreasing
sequence of n languages, each recognizable by deterministic Biichi automatax.

We will present the proof that any L € w-REG can be placed in this hierarchy ; indeed, given such an L, it is
decidable at which n L resides. [1] also asserts the converse, that if a language L C 3 can be expressed as x,
then L is w-regular.

The other key result of [1] is that the levels of this hierarchy corresponds exactly to the levels of the Hausdorff-
Kuratowski difference hierarchy, whence the latter is restricted to just those subsets of 3“ that are w-regular.
We will present this proof as well.

In section 1 we give preliminaries and notations central to formal language theory to automata theory. A

more thorough presentation can be found in [4].
After establishing finite state automata and how they interact with languages via various modes of acceptance, we
give some characterizations w-REG and certain of its subclasses. In particular we give a table ((REF TABLE))
relating the topological interpretations and set theoretic representations of classes of languages in correspondence
with varying modes of finite state automaton acceptance. For this we will include in section 1 some basic topology
and descriptive set theory.

In want of a finer complexity measure on w-languages than those provided by descriptive set theory, in
section 2 we introduce Wagner’s chain and superchain measures, and the resulting hierarchy induced on w-REG
(referred to as the Wagner hierarchy) consisting of the "exact" complexity classes C* . D?  E"  m,n > 1. Next
we present a coarser variant of these classes, the downwards classes 6;,3,13:;, EZ,EL and show their equivalencies
with certain Borel classes 2. Section 2 also gives Wagner’s [11] proof of the disjointedness of the exact complexity
classes, and thus the Wagner hierarchy is a proper refinement of the w-regular portion of the Borel hierarchy.
Moreover, the way this is proved also illustrates the invariant property of the chain and superchain measures :

2. we should specify here the equivalency is only once we have restricted the Borel sets to those which are w-regular; this will
be discussed in detail later on.



any two finite state automaton recognizing the same language will always be in the same complexity class.

We then define another measure on complexity from [11] which is dependent upon the specific automaton
accepting the language : the Rabin Index. It is a measure on the complexity of acceptance conditions for a
Rabin automaton (defined in section 1), and it is still compatible with the chain and superchain measures.
We give the results about the correspondance between the two. Section 2 will end with some decidability results.

In section 3 we once again we switch our attention to a topological standpoint to illustrate how classical
complexity measures in descriptive set theory have applications in the study of w-REG. In particular, we define
the Hausdorff-Kuratowski Difference Hierarchy (abbreviated sometimes HKDC) on the Borel classes A,41 of
Polish spaces? for a a countable non-null ordinal.

We then present an analagous difference hierarchy defined in [1] and give Barua’s proof that any w-regular
language sits in some level of that hierarchy.

At the time of Barua’s work, it was already well known from [7] that the w-regular subsets of 3“ were exactly
the class of A subsets of this same space. Immediately then they admit some level in the HKDC, taking the
case of the Borel class AY, giving first a weak correspondance of these two hierarchies. But the (countably many)
w-regular languages only stratifying an initial segment of the Borel hierarchy, it is not clear that there should be
a tighter correspondence. Indeed, this is the main result of Barua [1] : that any w-regular L will admit the same
rank n in Barua’s hierarchy as it would in the HKDC. Section 4 will present Barua’s proof of the seperation-like
theorem from which the result follows almost immediately.

The techniques we will see employed are generalizations of certain ways in which Landweber [7] characterized
the w-regular G5 subsets. We present Barua’s result here, emphasizing the separation theorem central to the
proof, and show how it is a generalization of a certain characterization of language computable by deterministic
Biichi automata : that it be accepted also by a full-table Mullei automata. We then revisit Wagner’s chain

measure and see how this property manifests itself in the class C by giving a more thorough illustration of
calculating the measures m-+",m~,n*,n~ for languages accepted by full-table Muller automata.

It is important also to see Barua’s method of proof because it gives an algorithm for computing an w-regular
language’s position in the restricted HKDC (equivalently, Barua’s hierarchy). Moreover this algorithm suggests
yet another way of classifying w-REG, namely by way of the complexity of Muller automaton. We define the
classes of this hierarchy as well. Section 4 will end with decidability results. At the end we will briefly discuss
why the results and methods of [11], [1], [7] are important to the study of languages of finite words and how
they might be extended to other studies. We will include references to recent surveys and studies in connection
with the topics of this paper.

2 Preliminaries

2.1 Notations; Basic Definitions of Formal Language Theory

We use the ordinal w to denote the set of natural numbers N = {0,1,2,3,...}.
An alphabet ¥ is a finite set of symbols (letters). We mostly will use a,b as our letters for working purposes.
Finite words over X are finite sequences x = (a1, ag, ..., ap) of letters of 3; i.e. forall 1 <i <n < w, a; € %.
Finite words will typically be denoted by lowercase greek letters z,y, z....
The length of word x is denoted |x|, and similarly for cardinality of sets A we write |A|.
The unique word of length 0 is the empty word and is denoted by the symbol €.
The ith coordinate of © = (ay,...,ay) is written z(z); it is a singleton of ¥. 2(0) = ¢. The concatenation
of letters a,b € ¥ is a.b, and for words z,y finite words over the same alphabet X their concatenation is
z.y = (2(1).2(2).....2(|z]).y(1)....y(|ly]))-

For words z,y such that |z| < |y|, = is a prefix of y if the sequence z is an initial segment of the sequence
y, i.e. if () = y(i) for all 1 < i < |z|. This relation is denoted by = C y.
A language finite words over X is a set whose elements are finite words. ¥* denotes the set of all languages of
finite words over ¥. Its complement, the set ¥*\ L is written L. Languages in ¥* will typically be represented
by uppercase latin letters L, K, U, ....
The concatenation operation is extended to languages : for L, K C ¥*, their concatenation is the language

LK :={zy|lzeLl, yeK}
We also define the union (L U K) and intersection (L N K) of languages L, K to be, respectively,
LUK :={z|zelL VvV zekK} (1)

LNnK:={xz|zelL AN ze€K} (2)

3. Polish spaces are topological spaces which are separable (contain a countable dense subset) and admit a compatible, complete
metric ; the Borel sets of these spaces are those of the o-algebra generated by open sets



An infinite word (or w-word) « over ¥ is an infinite sequence of symbols from ¥, and as for finite words
we write @ = (@(1).a(2).....(n)....) where (i) € X for all i < w. ¢ is the set of all infinite words over X.
The prefix of the w-word « is denoted a[n] = a(0).a(1).....a(n) for n < |a|. The concatenation of a finite word
z and infinite word « is noted x.«v

We use exponential notation to denote powers of finite languages : for L C ¥*,

— 9= {¢}
— L" ={a1az...a, | a; € L for all 1 <i <n}
— L= Un<w "

The last operation is known as the Kleene Star of L, and is a language in ¥*. The w-power of L C ¥* is
defined similarly :
LY ={a e | a=(x1.22...%...), x; € LVi < w}

_>
Definition 1. For a language L of finite words, the Eilenberg limit of L is the infinite language L defined by

%
L :={a € X% |ali] € L for infinitely many i < w} (3)

Le. f contains those w-words having infinitely many prefizes in L.

2.2 Finite State Automata

Before working with automata on infinite words, it is helpful to introduce what entails the definition of an
automaton on finite words.

Definition 2. A finite state automaton on finite words A is a 5-tuple (Q,X, 9, qo, F'), where :
— @ is a finite set of states
— X an alphabet
— §:Q x L+ 29 the transition relation
— qo € Q the initial state
— F € P(Q) is the system of final states, or acceptance component

If it holds that [6(g,a)| < 1for all ¢ € @ and all a € 3, then A is a deterministic automaton. Else, we say
A is nondeterministic.

Automata admit a natural graph theoretic interpretation : consider the directed graph G4 = (V, E) with
the vertices V' = @, and the edges being the set E = {(¢,¢') | Ja € ¥ s.t. (¢, a) = ¢'}. The edges are labeled
by the letter of ¥ which A reads in transitioning from one state to the next.

The languages recognized or accepted by A is denoted L(.A).
It is the set
{w e X" | A accepts w}

Where A accepts w € X* if and only if there exists a sequence of states (equivalently, a path through G 4)
(90, q1, -, qn) € Q™ satisfying the following conditions :

1. qo is the initial state

2. (qi,w(i),gis1) €dforall 0 <i<mn

3. gn € F

We let REG denote the class of languages L C ¥* such that there exists an automate A4 with L = L(A),
referred to as the rational or regular languages (over finite words). It is closed under union, concatenation,
complementation, and the Kleene-star operation.

Note that the acceptance component of a finite state automaton on finite words is always a subset F' C ), and
there is only one notion of acceptance.

In regards to infinite words (or w-words), the notion of acceptance becomes more complicated : which in-
finite paths through a finite graph should be considered accepting? First we define in terms of automata and
languages these infinite paths, or runs. Runs will typically be denoted by lowercase greek letters o, ....

Definition 3. A run of a finite state automaton A = (Q,%,9,qo, F) on a word o € X¥ is an infinite sequence
(g0, q1s s qn, ---) Of states ¢; € Q, i < w, such that (1) and (2) above hold.



Two important sets are associated with a run : Occ(o) and Inf(o), the set of states occuring at least once
and the set of states occuring infinitely often, respectively, in the sequence o.

Occ(o') = {q €qQ | di € w s.t. J(Z) = q}

In(o) :={q € Q | Vidj > i[o(j) = q|}

A run o can be either accepting or rejecting, depending on the mode of acceptance of the particular
automaton reading w words.
Biichi proposed the first notion of an accepting run in 1960 [2]. Formally,

Definition 4. A Biichi automata is a finite state automata Ap as in Definition 1; note that the acceptance
component is still a subset of states F' C Q.

For a word o € X%, Ap accepts o if and only if there exists at least one run o of A on « such that :
In(o)NEF #0 (4)

In other words, Biichi acceptance is the condition that on reading input «, the Biichi automaton A passes
infinitely many times through at least one of the states q € F.

As a first characterization result, we denote by w-REG the class of w-regular languages we have :

w—REG = {L C X“ | 3 a nondeterministic Biichi automaton A4; L = L(A)} (5)

The w-regular languages are closed by complement and finite union.

Example

Let X = {a,b}, and let L be the language of ¢ defined by L = {a € ¥ | @ = (aabb)“}.
L is recognized by the Biichi automata A = ({qo,¢1,92,93}, 2,0, g0, {g3}) pictured below. The double outline
around state g3 indicates this is a final state.

5

Biichi proved in [10] that the w-regular languages are precisely those which can be expressed as

|J UiV where U;, Vi € REG V1<i<n (6)

1<i<n

The above collection is called the w-Kleene Closure of the class REG. Another way of phrasing this fact is
that any w-regular language must contain an ultimately periodic word (In this way, checking whether a regular
w-language is empty is decidable).

The reason behind (6) is this : for any word « in w-regular L = L(A) for Biichi 4, there is an accepting
run o and a final state gp € F' C @ such that o(i) = g for infinitely many ¢, and in particular there is a word
2 € ¥* such that §(go,x) = gp. Counsider now 4 as an automaton on finite words, x is an accepted word and
more generally the set U = {z € X* | §(qo,z) € F} is a regular language. Similarly the set V = {z € ¥* |
5(qr,x) = qr for some qr € F} is a regular language. Taking the union of these two sets over F' (where say
|F| =n) we get the expression in (6).

Three years after Biichi’s seminal work, Muller [9] gave a different acceptance condition, equivalent in
expressive power to the Biichi machines, yet strengthened the characterization of w-REG in (5) in that the
automaton he defined could be equivalently made deterministic. McNaughton formally proved the equivalency



between nondeterministic Biichi and deterministic Muller in 1966 in [8]. The sharper characterization of the class
w-REG motivated other authors to define acceptance conditions, focusing on certain semantics or properties of
w-languages they wanted to capture. Thus ensued an array of alternative modes of acceptance posed by authors
such as Streett, Rabin, Landweber, Staiger, etc.. The plurality of definitions invites the questions : how do
these automata differ in their expressive power ? Are the different modes of acceptance indicative of structural
properties of the language ?

Indeed, we will see that in many cases the complexity of a mode of acceptance strongly influential of the
topological and set theoretic properties of the class of languages the condition defines.

We now look at some of these different modes of acceptance.

Definition 5. A Muller automaton A = (Q,X%,0,q0,F) is a finite state automaton equipped with the accep-
tance component F C P(Q), and the following acceptance condition (Muller acceptance) :

In(o) € F (7)

Theorem 1. (McNaughton)
A set L C X% is in w-REG if and only if there exists a Muller automaton A with L = L(A).

We reiterate that in the above theorem, A can be taken to be deterministic or nondeterministic without any
loss of expressive power.

This leads us to another important result we have been hinting at : that although any Biichi machine can
be transformed into an equivalent Muller automaton, the latter atuomata cannot always be transformed into a
deterministic Biichi automaton accepting the same language.
Therefore,

Theorem 2. There exist w-regular languages L such that L # L(A) for any deterministic Biichi automaton A.

Proof. Consider the language L over the alphabet ¥ = {a,b} defined as

L = {a € ¥* | 3 only a finite number of occurences of the letter b in a}.

First we note that L is indeed an w-regular language, for it is accepted by deterministic Muller automaton in
Figure 1, with equipped with acceptance component F = {{q.}}.

FIGURE 1 — An automaton on infinite words over alphabet {a, b}.

Theorem 1 also implies the existence of a nondeterministic Biichi machine accepting the same language;
explicitly, we can see the automaton in Figure 2 accepts L when we take acceptance component F = {{q1}}.
However 6(qo,a) = {qo,q1} and so the automaton below is nondeterministic.

FIGURE 2 — A nondeterministic Biichi automaton on infinite words

Suppose, for contradiction, there exists a deterministic Biichi Ap = (Q, %, 0, g, F') recognizing L. Since the
w-word a¥ € L, there is an accepting run o by Ap and some n; < w such that o1 = (qo, ..., Gny, ---), and ¢, € F.
The word a™.b.a¥ € L, so it is accepted also by Ap, and as before we find ¢,, €Inf(o2)NF where o9 is the
accepting run in reading a™.b.a*.

Continuing this reasoning, we can construct an accepting run on the w-word g = a™*.b.a"2.b.....b.a"™* .b....) for
all k < w, i.e. B has infinitely many blocks a™.b, which is a contradiction. O



The above theorem offers an example of two different acceptance conditions having different expressive
power. We present the proof to illustrate the unavoidable limitations of deterministic Biichi, since this class is
of particular importance to w-REG as we will see later.

Nonetheless, there exist other finite state automata having exactly the same expressive power as deterministic
Muller and therefore recognize the class w-REG :

Theorem 3. The following automata are equivalent in expressive power :
— deterministic Muller, Rabin, Streett, parity ;
— mnondeterministic Biichi, Muller, Rabin, Streett, parity.

We refer to [4] for the definitions of Streett and parity automata and the proofs of the equivalencies. Such
proofs are generally algorithms to transform one type of machine into another.

The following definition, concerning a special type of Muller automaton, will be needed. In fact, this paper
show how this notion reappears in terms of Wagner’s chain measures as well as its importance to results in
Barua [1].

Definition 6. A Muller automaton Ays is said to be full-table if for every F € F, if there exists a superset
F' D F, then we must also have F' € F.

The last automaton on w-words we introduce is particularly illustrating of the hierarchies and complexity
measures discussed in this paper.

Definition 7. A Rabin automaton Ag is a finite state automaton A = (Q,%, 6, qo,?)
where Q,%,6,qo are as defined previously, and additionally Ag is equipped with the acceptance component
Q= {(E1, F1), ..., (Eg, Fr)} for some k < w, where E;, F; C Q for all i < k.
Rabin acceptance is the condition that Ar accepts a word o if and only if there exists a natural number i < w
and a run o on « passing infinitely many times through the sets F; and only finitely many times through E;.
Symbolically,
In(o)NE; =0 A In(o) N F; # 0 (8)

In section 3, we will see how the chain and superchain measures are compatible with another complexity
measure specific to Rabin automata (called the Rabin Index) that counts the minimal number of pairs (F;, F;)
needed to recognize a language L € w-REG.

2.3 Topology and Descriptive Set Theory

We give here some basic background and definitions which will be used in later sections. Kechris’s text [6]
is a useful resource if the reader is less familiar with topology and descriptive set theory.

Equipping the set ¥ the discrete topology, we naturally then view 3“ with induced product topology. A
compatible complete metric is given by d, where for o, € X%,

1
d(a, B) = on ifa# B and n =min(i € w | afi] # F[i]) andd(a,B) =0if a =4
The space X is countable, separable, and admits a basis of clopen sets : we fix a basis for 7 by defining the
sets
Ny ={ae¥¥|we¥", wCa} (9)

The topology thus generated is often known as the Cantor topology, but with a more automata-theoretic
flavor it is sometimes called the prefiz topology. (X“,7) is Polish and homeomorphic to the Cantor space 2“ in
which the topology is defined analogously for ¥ = {0,1}.

The Borel o-algebra on a topological space (X, 7) is the smallest family of subsets of X containing the
open sets and closed by countable union, countable intersection, and complement. The Borel hierarchy is the
classification into these sets based on their level of generation in the Borel o-algebra. That is, for a a countable
ordinal we define by transfinite recursion the following pointclasses :

»0:={U C X |U is open in X}

I := {F C X | Fisclosed in X} = -X¢
AV =10n3xY



Af AS e A Al

For 2 < a < wy,
X :={UCX|U= |V where V,, € | JII} Vn<w}

n<w y<a
) :={FCX|F=()U,where Uy € | B} Vn<w}
n<w y<a

A =110 Nx0

We note the following properties :

— All classes are closed under finite unions and finite intersections.

— Forall 1 < a < wp, X0 and (I1Y) are closed under countable union and intersection, respectively.

— The class A? is closed under complement,

— Forall 1 <a<wy, XY = I,

The next theorem, presented first in [2] and in [7], establishes where the class of w-regular languages fits into
the Borel o-algebra. It is credited to Biichi and Landweber [2], and later Trachtenbrot (cf. [11]).

It is necessary to highlight that as there are 2% Borelian subsets of ¥* and only a countable number of
w-regular languages, the class w-REG stratifies only a small fragment of the Borel hierarchy. Therefore we need
to specify when we are considering this smaller class of Borel sets.

We will use an denote the pointclass ©Q € {X,II, A} whence restricted to the class w-REG, i.e. :
00" =0 N{LC¥¥|Lecw—REG}

Theorem 4. Let L be a language of infinite words over a finite alphabet 3. If L is an w-reqular language, then
L is a AY subset of X¢.

We have another characterization result, suggesting the importance of properties of the G5 w-regular lan-
guages to the entire class w-REG.

Corollary 1. Let B(QQ) denote the Boolean Closure of a pointclass Q. Then
w—REG = B(119%) = 829"

As mentioned in the introduction, the w-regular languages admit have very nice topological interpretations :
for every Borel class of w-regular languages, one can give a definition of this class in terms of the mode of
acceptance necessary to recognize languages of this class.

The table below summarizes the relevant results, linking the Borel complexity of the regular languages to
modes of acceptance of a deterministic finite state automaton A = (Q, 3,0, qo, ). It is easily observable for
the open and closed languages how the complexity quantifiers of an acceptance condition coincides with the
classical notion of definability of Borel sets in these classes. These results are proved in Landweber [7].

Borel Class Acceptance Component Acceptance Condition

Open (Z?R) FCQ Vi(d(qo, afi]) € F

Closed (I19™) FCQ 3i(6(qo, afi]) € F

Gs (9% FCcQ Jarun o on a, In(o) N F # ()

F, (ZgR) FCPQ) Jarun o on o and IF € F(In(a) C F)
w-Regular (AgR) FCPQ) Jarun o on o and 3F € F(In(a) = F)

Note that the above table gives representations with respect to the Cantor topology. There exist however
other topologies one can put on the space of languages of infinite words, many have which been recently proved



to be polish.

For example, the Biichi topology Tp defines the open sets of ¥“ to be the w-regular sets— i.e. the sets in
AY for the Cantor topology. Since this topology is polish, the study of w-languages classified with respect to
the Biichi topology can potentially be enriched by classical descriptive set theory, yet may provide different
automata-theory conclusions since the levels of the two resulting hierarchies do not coincide. These results are
done in [3].

3 The Wagner Hierarchy

By 1979, the works of Biichi, Hartmanis and Stearns, Landweber, Trachenbrot and Bardsin, Hossley, Wagner,
Staiger, and McNaughton (see [10], [5], [7], [12], [8]) effectively completed the study of finite state automata
and their topological connection to certain fragments of the Borel hierarchy on the space X, the main results
of which we just saw.

Naturally, then, the study of the w-regular languages looked for other possible measures by which to clas-
sify these sets. To this end, K. Wagner introduced the measures m™, m~, the chain measures and n™,n~, the
superchain measures. Roughly, the role of these measures is to consider the deterministic Muller automaton
recognizing some L € w—REG, and to look (respectively) at the maximal length of alternating sequences (the
chains) of sets of states, and then the maximal length of chains of chains (superchains).The alternating character
of chains is defined by if a set of states is considered accepting (positive) or rejecting (negative), relative to the
acceptance component F.

An important feature of these measures is that they are proved in [11] to be invariant of the specific auto-
mata accepting the language— if A and B recognize the same w-regular language L, the maximal chains and
superchains of either automaton must be the same numbers m and n. Defining then an order < on w-REG
based on these measures, we obtain the resulting equivalence classes which Wagner names the exact complexity
classes, denoted C7,, D and E. We will see that the entire class w-REG 1is partitioned into these exact
classes, and furthermore that it is decidable at which level some w-regular language resides. We include the
visual representation of Wagner’s hierarchy on page 13.

Another way in which Wagner’s hierarchy advanced the study of finite state machine recognizable languages
of ¥* was in its refinement of the corresponding relativized Borel hierarchy, allowing for a finer notion than
that provided by descriptive set theory of how "complicated" a language is. R

Zooming out, we can also consider the downwards complexity classes presented in [11]|, denoted G, for
G € {C,D, E}. Essentially, they contain languages "reducible" to the corresponding exact class. We look at
these generalized classes because of their equivalence with the low level Borel classes we looked at in section 1,
thus giving a familiar frame of reference in studying Wagner’s classes as well as showing a compatibility between
complexity in terms of set-theoretic definability, and complexity in terms of structural, automata-theoretic pro-
perties. N
As mentioned, this paper in particular will look at the class C2, Wagner’s equivalent to the II3 or G5 languages of
w-REG. We give a proof of the equivalence, in one direction analyzing a G regular language with the chain and
superchain measures. Doing so sheds light on the necessary properties (and limitations) of automata accepting
exactly this class. This interpretation will then be used to help present the main proof in [1], covered in section 4.

But first, we need to provide the necessary machinery for understanding this measure.

3.1 The Chain and Superchain measures

We begin by identifying the subsets of @@ which are "practical" in the sense that they only contain states
which can potentially be visited by the automaton, otherwise called accessible, and that these states form loops
or cycles and thus could be seen over and over in an infinite sequence of states (i.e., a run of the automaton).
We therefore define two notions :

Definition 8. Let A= (Q,X,6,qo, F* be a finite state automaton. A state q € Q is called accessible if there
exists a word x € ¥* such that §(qo, ) = q.

Recalling some graph theory,

Definition 9. Let G = (V, E) be a directed graph. A strongly connected set is a subset S C'V such that for
any u,v € S there exists a path in G from u to v and likewise from v to u.

4. We remark that this definition is not exclusive to automata on finite or infinite words, determinism, nor the mode of acceptance



A strongly connected component S is a strongly connected set which is mazximal; i.e., there is no other
strongly connected set S’ such that S C S’

Definition 10. For a deterministic finite automaton A = (Q, %, 6, qo, F) we define the family of essential sets :
M(A) :={F C Q| F is a strongly connected component of Q} (10)

Intuitively, the name "essential" alludes to the property that these are sets of states which can be seen over
and over again (i.e. those with loops or cycles). They are sometimes called admissable sets, and in section 4 we
will see yet another characterization of them as sets of realizable cycles ([7]).

In particular we note the set Inf(o) is an essential set for any run ¢ by a finite state machine. The following
lemma outlines the nice properties of essential sets interpreted by language and automata-theoretic ideas as
prefixes and intermediate transitions.

Lemma 1. S € M(A) if and only if there is g € S and finite words x,y € ¥* such that

6(q0,7) = d(q,9) = ¢
S ={d(q,w) | wCy}

In fact, for any state q belonging to an essential set S one can find words x,y € ¥* such that the above conditions
hold.

In other words, the essential sets are the sets of states such that if there is a cycle (¢, q1,...,qn,q) in A,
accessible from the start state g, then the set {q,q1,...qn} is essential. The essential sets are those which can
give rise to a run which is either accepting or rejecting since they will influence the set Inf(c). We divide
the essential sets accordingly, based on the acceptance component F of a deterministic Muller automaton

.A = (Q,E,(S,QO,J—").E’
Mt (A) :=M(A)NF
M~ (A) := M(A) N FC

From here, we can now look for chains of elements of M(A) : increasing (with respect to C) sequences of
essential sets that alternate between accepting (M (A) and rejecting (M~ (A). Chains are distinguished by the
"polarity" of the innermost set :

Definition 11. A positive chain (resp. negative chain) is a sequence Fy C Fy C ... C F,, for some n € w,
such that Fy € MT(A) (resp. F1 € M~ (A)).

Now we focus our attention on the maximal lengths of chains, sorting the chains of A via the inductively
defined sets M} (A) and M, (A) : for a set of states F' € Q, let S € M, (A) (vesp. M, (A) if and only if F is
the last set of a positive chain (resp. negative chain) of length m.

M (A) := M*(A) M (A) := M~ (A)

We use Wagner’s notation, m™(A) (resp. m~(A)) to denote the largest m < w such that the set M} (A)
(resp. M, (A)) is nonempty. By convention we let m™*(A) (m~(A)) equal 0 in the case the above two sets are
empty.

We sometimes will abuse notation and write m™ or M, instead of m*, M, when the automaton A is clear
from the context.
To see things symbolically :

Definition 12. For natural number m > 1,
My ={FeM (A)|3F e M} st F CF} M,, ={FeM"(A)|3IF e€M,,, st F CF}
M ={FeMt(A)|IF e M), st. FCF} M, ., ={FeM (A)|3F €M,, st F'CF}
And we let
m* (A) = max({m | M, # 0} U {0}) m~(A) := max({m | M, # 0} U {0})

5. We do this without loss of generality by MacNaughton’s theorem : any automaton accepting L € w-REG can be transformed
into deterministic Muller. However, we will later see that the invariance property of the chain measures renders this remark
inconsequential.

10



The inductive construction of these sets together with the fact M(A) is a finite set gives us a decidability
result :

Lemma 2. For any given A, a deterministic Muller automaton on w-words, there exist algorithms to compute

mt(A) and m™(A).

In particular we refer the reader to [14] for an efficient algorithm to compute the maximal positive chain
number m™(A).
The sets M have the following properties :
Lemma 3. 1. Fe M) <& 3F,F, .. F, CQ suchthat F,, = F, F; C F;1, and F; € M (M"™) for
i < m odd (even).
2. FeM, <& 3F,F,..,F,CQ suchthat F,, =F, F; C Fi11, and F; € Mt (M™) for i < m even
(odd).
For m even, M, C M~ and M,, C M+
For m odd, M} C M and M,, C M~.
Im*t —m™| <1
For automaton A = (Q,%, 4, qo, F), m*(A) = mT(AY) where A = (Q, %, 9, q0, FC).

SN

We now introduce the superchain measure. It is defined in a similar way as above, but instead of measuring
sequences of elements F' € M related by set inclusion, the superchains are alternating sequences of maximal
length chains— i.e., chains of chains. The superchains are ordered the relation of reachability :

Definition 13. For a set of states Q) and subsets Fy, Fo C Q, a state g2 € Fy is reachable from q; € Fy if and
only if there exists a finite word w € ¥* such that §(q1,w) = ¢a.

We say the set Fs is reachable from Fy if 3qo € F5 and 3q1 € Fy1 such thatq, is reachable for gs. In particular,
when F1, Fy are essential sets, Fy is reachable from Fy if any qo € Fy is reachable from any ¢, € F;.

This relation is denoted Fy > 4 Fy (or Fy > Fy when A is clear from the context).

We build by induction on n the sets N, (A) and N, (A), restricting our attention to chains of maximal
length.
From here on, we use m to denote the natural number m = max(m™(A), m~(A)).

N{(A) == M (A) Ny (A) == M (A)
For n < w, we define sets of superchains :

Ny ={F e My(A) |3IF' € N} | st. F'>F} N, ={F e MI(A)|3F €N,, st F'>F}

n

N;,LJrl ={FeMI(A)|3IF ¢ Nztl st. F'>F} Nopyq i ={F € M, (A) | JF" € N;,, s.t. F'> F}
We set
n*(A) := max({m | N, (A) # 0} U {0}) n” (A) == max({m | N, (A) # 0} U{0})

Le., n™ and n~ are the maximal length of positive and negative superchains, respectively.
The following lemma will be used in later proofs and captures the interplay between the maximal length
chains and superchains :

Lemma 4. L. mtA)=m(A)+1 & nfA)=1 A n(A4)=0
2.m (A)=mTA)+1 & nT(A)=0 A n(A)=1
3. mt(A)=m (4 & ntA),n (A >1

3.2 Exact complexity classes

Now that we have a grasp of what the measures m™(A),m™(A),n"(A),n~ (A) actually count, we can begin
to investigate how w-REG can be classified with respect to these numbers.

To this end, we extract the pure structural (chain) properties by considering two languages to be equivalent
if they are equivalent by following ordering < on w regular languages U,V C ¥* where for some for some finite
state automata A, B, U = L(A) and V = L(B).



The order < is clearly reflexive and transitive. We pose the natural equivalence relation = on the w-regular
subsets of ¢ by letting U =V < [U < V AV < UJ; the resulting equivalence classes are partially ordered by
<.

These classes of w-REG \ = are the ezact complezity classes we are interested in. They are given the names
Cr . Dr . and E7. On the next page is the visual representation of what we call the Wagner hierarchy. It
is interpreted as such : for two exact classes P, Q, if P and @Q are connected and P is not higher than @ then
P < Q. For example, we have 022 < E% < D%.

Clo={LA) | mA)=m A nf(A=n-1 A n (A)=n}

m

D= {LA) |m(A)=m A ntA) =n A n(A)=n-1}

m

El ={LA) | mA) =m A n"(A)=n (A =n}

Note that we still have not seen that the measures m,n are indeed independent of the specific automaton
used, and so at this point we wonder if some w-regular language L could reside in more than one of the
above classes. For example, if there were two different automata A and B (on the same language ¥) such that
L = L(A) = L(B) butm(A) # m(B), the equivalence class of L(A) cannot be the same of L(5), though they
are both equal to L. We will show this cannot be the case.

We give some fairly immediate properties of the exact classes. Proofs are given in [11] and follow directly from
properties of the sets M~ NT.

Lemma 5. 1. For any w-regular L, L € J,<,, oo (Ch, U D} U ET)
2. Cn and D7, are dual classes for allm,n <w : L€ C?, & LY e Dn,

3. The classes E are closed under complementation : L € E", & L% € E"

To prove this hierarchy is proper, Wagner [11] constructs two languages V" and U, of w-words over the
alphabet ¥ = {0,1}, and belonging respectively to C? and DI . Once these languages are classified, then, we
will present Wagner’s proof that V! cannot be in DJ),. Since these are equivalence classes, if we show they are
not, equal, then they are disjoint and the hierarchy is proper.

First, we need to see these sets are w-regular and indeed belong to the desired classes. To this end we
provide the transition graph of a specific deterministic Muller automaton B = (Qg, {0,1},05, 4}, F5). It is
pictured below in Figure 3.

We’ll now define the languages V! and U}}.

In an effort to simplify notation, first let

_)
E = (10U110U...U 1%0)

m

Ve= |J @0t u— Loy (11)

0<v<n
1<u<m
vt+ueven

In this case (n odd) we let U? := (V,*)C.
For n even, we have an almost identical definition of U}, yet note that the parity of v + v has changed :

un = | @0 @) u— 1) (12)

o<wv<n
1<u<m
v+uodd

Similarly, V" := (U)%, whence n even.

12
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FIGURE 3 — The automaton B recognizing V' for n odd.

Now we must define a suitable acceptance component to ensure B to recognize V', for n odd; the case for
n even is similar.
We set
Fe={{e,a}t|0<u<m A O0<v<n A u+vodd}

Observing some characteristics about the structure of B is also a way to develop a visual intuition for how
the chains and superchains of a language are observable in the structure of a finite state automaton.
Example

Consider the set Fy = {q},¢i}. Let o be a run by B such that Inf(s) = Fy. Using the transition graph, we see
that the run o could only arise from B reading a word of the form (10)“, which is not in V,. Correspondingly,
Fy is a rejecting cycle; Fy € M~ (B). On the other hand, Fy C {¢},q}, ¢} € F, so m=(B) > 2.

The transition graph for B above visually organizes the chains and superchains : chains are captured by
the vertical columns each of height m; as we just saw in the previous example, going up a level corresponds
to increasing the chain length. For v odd, the largest index w in essential set F' = {¢, ¢}, ..., ¢l } indicates that
F € M} (B) for u odd, and F € M, (B) for u even. As 1 < u < m, m(B) =m.

Adding 1 to nt or n~ corresponds to the automaton moving one column to the right. The transitions between
columns labeled by 0 is observable in the definition (11) by the 0 in the factor (74*.0)" ; each time the top index
v is increased by 1, the automaton must read another 0 from state 6(q8,m) = ¢y, and d(q§,0) = q8+1 (for
1 < v < n), hence the machine has moved to the right one column. The parity change in v gives the alternating
behavior of the superchain.

Note that not all runs by B on words in V;} will witness maximal chains and superchains; the word
(10.110)* € V,* = L(B) is accepted by a run which sees only a length 2 negative chain. Providing a parti-
cular case of a run of B that realizes maximal chains and superchains is not crucial for the proof V,» € C7,,
since it suffices to show there exists some finite state Muller automaton capable of computing V.

However in the proof of Theorem 5 to follow, that V' ¢ DI | we need to show that for an arbitrary automa-
ton A recognizing V', L(A) ¢ D,. As was mentioned after the definition of the exact complexity classes, we
haven’t yet shown that any automaton equivalent to our particular B will have the same number of maximal
chains and superchains. Thus not only do we need to generalize the automata we work with in the proof, but we
will need a careful construction of an w-word complex enough that a maximal length chains and superchains will
be realized by an automaton with sufficient expressive power. Specifically, since the difference between classes
Cl and D}, is the number of superchains, we will need this "witness" word to force the any appropriately
powerful machine into running through a negative superchain length n.

Formalizing this discussion, from B of 3.2 we conclude :

Lemma 6. 1. vrecCy
2. U e DY,

Proof. 1t was explained above how 3.2 suffices as a proof. The construction of this specific automaton is credited
to Wagner [11]. O
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Theorem 5. V! ¢ D7 for n odd

Proof. We treat the case where m is also odd, as Wagner does, but we focus on filling in the details missing in
the original proof. Since V; is indeed an w-regular language, allowing us then to apply McNaughton’s theorem
to take an arbitrary deterministic Muller automaton A = (Q, {0,1}, 6, g9, F) such that L(A) = V.

Denote s = |Q] < w.

We construct by recursion on m a finite word w,,, our so called "witness" word.

Wy 1= (12.0.11)1)5

Wy, = (10w —1)°

Now we consider runs by A on the infinite word (w,,)*. By the way the prefixes (w;,)“ have been defined,
the acceptance or rejection of a run will depend on the parity of m, so a run on (w%,) = (1™0.w,;,—1)¥ = ... =
1m0.(1™710.(....(120(10)%)*)..)*)*, A must realize a chain of length m.

We'll need the following :

Claim 1. (w,)* ¢ V" for m odd.

Proof. We try to rule out possible candidates of words in V,” to show that (w,,)* can not possibly be one of
them. Let’s call a word "good" if it is a member of V; and of the form (17.0.wy,—1)%.

The infinite word (w,,)* = (1".0.wp,—1)* has an infinite number of factors 1.0, so we must take u = m
in the definition of the language V.. Accordingly, since m odd, the parameter v € [0,n) must also be odd, and
any "good" word will be in the sublanguage :

U @0 @*).m — L.am)

o<v<n
vodd

Since v # 0, a "good" word will always have some prefix of the form (H*O) Then, no matter how many (finite)
iterations of m, a "good" word either has consecutive 0’s in its prefix, or it begins with a 0. But by the definition
of w,,, this can never be the case in the word (w.,)*.

Lastly, we remark that for m even, the word (w,,)* € (71)*.(m — i.lm.O)w, i.e. the language V; when taking
v=0and u=m. O

Since V7 = L(.A), by the previous claim, we know a run o by A on (wy,)* = (1™0.w.,—1)* will be rejecting.
Thus there exists some essential set F} € F¢ with In(o) = FJ,.
We wish to show that F,, € M, (A). To do this, by Lemma 3, it suffices to find essential sets F}\, Fi},..., F}_,
subsets of F such that F; C F;;1, and F; € M (A)[M~(A)] for i even [odd].

To get a better handle on elements of F}, we set ¢1 := d(qo, wm) = §(qo, (1™0.w,,—1)*). Because of the choice
of s > |Q|, at some point when reading the word w,,, the automaton A will pass the same state ¢;. Let s,,, < s
denote this point.
Therefore,

q1 = 6(qo, (10w —1)"™ = 0(q1, (1™ 0. Wy —1)° ™)

In other words, the states seen reading (1™0.w,,—1)**™ form a cycle around the state g;. By the choice of the
essential set !, and by Lemma 1, we can see that

Fp, = {8(q1,w) | w T (1M0.wp-1)* """}

Now we look for an essential accepting set (which will be denoted F}, ; contained in F!,. Such a set would
be be composed of the transitions given by 6 when A reads finite prefixes of a word in V! (an accepting word),
and this word in turn necessarily a prefix of w¥, so to ensure F},_; C F}.

Using the recursive construction of w,, we note that we can rewrite w,, as
W, = (1M0.wp—1)°
= (10w —1)* 1. (1™0). (Wi 1)
= (1™0.wp,—1)* 1. (10).(1™ 0.0y, _2)*
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Letting t,, = (1™0wy,—1)*"1.(1™0), and using the above claim, we find t,,.(w,,_1)* € V. Therefore, when A
reads t,,.(w® _; from start state o, there is indeed an essential set F}, ; € M*(A) consisting of states resulting
from transitions from ¢; while reading prefixes of w% _;. These states are found more explicitly by using the
previous argument for w, : the fact that |w,—1| > s > |@|, and by the choice of ¢1 = d(qo, wm ), there is a

moment s,,_1 < s such that

m—2

Now we can apply similar reasoning to F,_; to see :
Fpoy = {0(q1,w) | w E (1" 710wy —2)* 7" 71))}
From these first two iterations, we start to get a sense of the nested cycles originating at the state ¢;. By
definition, F. | C F}l.

The decomposition wy, = ty,. (1" L, _2)* = timtm—1(1"20.w,,_3)%,
where we let t,,, 1 := (1™ 20.w,, _2)*~1.(1™~1) gives the next step of the proof.

(1m0.wm_1)sm
@ qQ (I™0.Wyp—q )~ °m

(170.wp_1)¥~5m1

Iterating this argument until m = 1, we obtain
FlCFE/ C..CF., | CF} (13)

Furthermore, F! € M~ (A) for i odd; in particular we have F} € F¢ and conclude that (13) is a negative chain
of A of length m, and so m™(A) > m = m > m.
If m > m, then L(A) = V,* ¢ D', and we are done.

So suppose not, m = m. Our goal is to now construct a negative superchain : using from the negative chain
(13) as our first element, we look for alternating positive/negative chains each of maximal length m = m. The
top index j of F} is used to keep track of where we are along the superchain. Once we have found a collection
of n such chains (Fij)lgigm, we then need to check that for all 1 < j <mn, Fin is reachable from FZ]
Assuming all this can be done, the existence of a negative superchain of length n then gives the result.
Construction of the superchain : We now consider runs by A on the word wy,.0.(w,,)%.

Letting g2 := 0(qo, W -0.wyy,), Since (wp,).0.(wm)* = (1™0.wp—1.0).(1™0w,,—1)* is not a word of V,* by the
claim, a run on (wy,.0.w,,)* is rejecting. Thus we find an essential set F'2, and a finite word = such that

Fy, = {8(qo,w) | w C «}
After n — 2 more iterations of this argument we get the family :

{F}|F] CFj,, 1<j<m}lc<i<n (14)
where for i odd, (F;)1§j<m is a negative chain, and is a positive chain for i even. We conclude that there is a
negative superchain of length n in L(A) = V", as desired. O

As the automaton A was arbitrary up to recognizing the language V!, the above proof immediately gives
the following corollary stating the invariance property of the chain and superchain measures.

Corollary 2. For any two automata A, B recognizing a language L, m(A) = m(B), nt(A) = n~(B), and
n~(A) =n~ (B).
3.3 Downwards Complexity Classes and their Topological Interpretations

Coarser than the exact complexity classes are the "downward"” complexity classes, still defined by the same
measures. The following definitions of, and subsequent lemmas pertaining to, these classes put into perspective
the precision of the exact Wagner hierarchy in comparison with the topological correspondences we have seen.
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T = {L(A) | max((m* (A),m™(A)) <m) v ((m*(A),m~(A) =m) An*(A) <n-1)}

Dy, := {L(A) [ max((m™(A),m™(A) <m) Vv ((mT(A),m~(A)=m) A n (A)<n-1)}

En = {L(A) | max((mT(A),m (A)) <m) Vv (mt(A),m (A)=m) Ant(A)<n An (A4) <n)}
Recalling the order < we can further characterize these classes :
Lemma 7. 1.L€6’E@LC€5§L
2. LeGn < 3UWU eG™ AL<U) for Ge{D,C,E}

Roughly, we can view the downwards classes as those w-regular languages which are less complex than a
language belonging to the corresponding exact class. The above classes have topological analogues ; the proofs
have been done by Wagner in [13].

Theorem 6. 1. E?R = 6\'12
2. O™ = D2
3. M9~ = ¢l
4. 29" = D}

5. AT =L, (Cru DY)

We give the proof of (3) because of the role 113 languages play in [1].
The next lemma gathers a handful of equivalent representations of a G5 w-regular language, and so will be used
in proving Theorem 5.3. or we can make use of the following notions :

Lemma 8. The following are logically equivalent for w-Regular languages L :
1. Lelly;
2. L is recognized by a deterministic Biichi automaton ;
3. L is recognized by a full table Muller automaton ;

4. L= ? for some X C 3% X € REG.

Proof (Theorem 6.3). Supposing L € 6’;, we must consider the possible values of m and n* for a deterministic
Muller automaton A such that L(A) = L.

Case I :

Suppose m < 2. The conclusion is trivial for m = 0, so let m = 1. Then A has any chain, positive or
negative, being at most length 1. This implies the sets M T (A) and M~ (A) are incomparable in the sense that
VE,F' € M™*, M~ respectively, we never have F' C F’ or I’ C F. In particular, no accepting is contained in a
rejecting set, hence A is full-table, so L(A) € TI3.

Case II :

Suppose now m = 2, requiring nT < 0. This means the deterministic Muller automaton .4 has either a

positive or a negative chain (or both) of length 2, yet has no positive superchain.
We consider further subcases :
Case IL.i e

If m=m"=m" =2, Lemma 4.3 implies n™,n~ > 1, but that is incompatible with L € CJ by definition.
Case IL.ii

Suppose it is a positive chain of A which realizes the maximal chain length, and that m~ = 1. Note that by
Lemma 3.5 m~ cannot be 0. Using Lemma 4.2, nT = 1 and n~ = 0, so again we do not need to consider this
case.

Case II.iii

By elimination we necessarily have that if m = 2 then m™ = 1, m~ = 2, and Lemma 4.1 gives that n™ =0

and n~ = 1.

The values of m™,m™, and n™ in this case imply that A is full-table Muller. In fact, we arrive at this
conclusion just by requiring the maximal length of a positive chain be 1, as this implies that no accepting set is
subsumed by rejecting one. Thus L(A) € I19. Note that when m > m™, as in this case, n* is necessarily equal to
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0 by Lemma 4.2 so we are still within the definition of C3. Another small observation is that that G w-regular
languages can still have negative 2-chains; an easy example is the language K := {« € {a,b}* | « contains an
infinite number of occurrences of the letter a}.

Furthermore, no positive superchains can exist since n™,n~ measure only superchains of chains of maximal
length m; having no positive chain of maximal length we could not hope to find a positive superchain.
The converse is simpler : given L € HgR, Lemma 9 gives that L = L(A) for deterministic Biichi or full-
table Muller automata. We take the latter characterization to see that m™(A) is necessarily 1 or 0, implying

m~(A) < 2, thus L(A) € CJ. O

3.4 Rabin Index

In this section we will briefly introduce another measure of complexity on the w-regular languages : the
Rabin index. However, unlike the chain measure, this measure is specific to Rabin automata defined in the
introduction. One can begin to draw connections between this index and the notion of a difference hierarchy—
this will be made explicit in section 4. We define the Rabin index of an w-regular set as the minimal number
of sets (E;, F;) needed in the acceptance component € of a Rabin automaton recognizing the language (such an
automaton always exists due to Rabin automata having equivalent expressive power as Muller automata). For
an example of how this measure is taken, consider the transformation from a deterministic Biichi automaton
Ap = (Q,%,6,qo, F) into a determinstic Rabin Ag. Recalling the Biichi condition (2), it is easy to see that
simply setting Ar = (Q, X, 4, qo, {(0, F)}) defines an equivalent Rabin automaton accepting L(Ag). We thus
give this language the Rabin index 1.

Denote by IR(L) the Rabin Index of L € w-REG.
Symbolically,

Definition 14. IR(L) := min{m | 3Ar = (Q,%,0,q0,Q) s.t. |2 = m A L(Ag) = L}

Where Q2 C P(Q) x P(Q) and
LA ={aeX¥|doarunona st In(c)NE;=0AIn(c)NF; #0 for some 1 <i<m}

Recalling that the downwards equivalence classes have very nice topological interpretations, Wagner has
employed topological methods to prove the following result [11].
Wagner proves the following correspondance between maximal positive chains (m™) and the Rabin Index.

Theorem 7. (IR/ m™ correspondence)

IR(L(A) = [(—F——

In fact, [14] shows that given Ay a deterministic Muller automaton, one can compute in polynomial time

IR(L(AR)).

3.5 Decidability
We briefly include relevant decidability and computability results.

Theorem 8. — Given an w-regular language L and a finite state automaton A such that L = L(A), there
is an algorithm for determining at which level L resides in the Borel hierarchy”
— Given a finite state automaton A on w-words over ¥, IR(L(A)) is computable.

4 Difference Hierarchy of A

Let us consider again the Borel subsets of a separable, completely metrizable space, and in particular the
classes A also called the "ambiguous classes" .

We have just seen how Wagner’s hierarchy is a refinement of this fragment of the Borel sets of P(X“) N w-
REG ; a result by Hausdorff and Kuratowski gives another refinement, but of the larger more general class AJ :
the difference hierarchy. Roughly speaking, it gives an order on the A9 subsets corresponding to how many G5
(or T19) subsets of which the given AY set is formed. See [6] for more.

First, let us define the levels constituting the difference hierarchy :

6. |k| denotes largest natural number less than k.
7. relativized to the w-regular sets of P(X%)
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Definition 15. For a pointclass Q) of subsets of X%, let the class D, () be defined as follows :

LEDH(Q) = L:(Ll—L2)+(L3—L4)+:ELn
where L; € Q Vi <n,
and L1 2 L2 2 2 Ln

Theorem 9. [6] Let X be a completely metrizable, separable topological space. Then for any countable non null
ordinal o, we have :
Angl = U Dn(Hg) (15)

1<a<wy

As there are continuum many Borel sets belonging to the class A%, and only countably many w-regular
languages, we wonder what happens when we relativize (15) to just those AJ subsets computable by finite state
automata (the class w-REG).

Similar to Theorem 9, Barua [1] has defined a difference hierarchy on the w-regular languages in terms of w-
regular G5 languages, also characterized as being those languages computable by deterministic Biichi automata
by Lemma 9. Let us call this class the "Biichi Gg’s".

Barua constructs the automata theoretic analogue of (15) in the following way : we define the class D,, as in
Definition 12, yet we take €2 to be the class of regular G5 languages over X. The first portion of [1] is dedicated
to proving the following :

Since any w-regular language L is a AY subset of ¢, we can conclude that L resides in some level D,, in
(15), and that L is a union of differences of n II3 or Gy sets.

What is not immediate, however, was if this n coincided with the hierarchy (J,, ., Dp.
Barua was first to gave a positive answer to this in [1] for the case n > 2, and we present this proof in the
following section, establishing that indeed :

DR =D, (16)

4.1 Difference Hierarchy of Biichi Ggs

As in the beginning of this section, we define the levels D,, of a difference hierarchy on w-REG :
LeD, & L=[J(Gi-Gin) (17)
The following is due to Barua [1]. It allows us to completely characterize w-REG with the levels defined above.

Theorem 10. The following are equivalent for L C X% :
1. L is w-regqular
2. L is a finite union of differences of Biichi G5 languages
3. L is a finite disjoint union of differences of Biichi Gs languages

4. There exists a decreasing sequence (G;)o<i<n With G; 2 Giy1 and G; is Biichi G5 for all 0 <i <n such
that

L= |J (Gi—Gip) (18)

0<i<n
ieven

We briefly sketch a proof of the implication (1) = (4) is done by showing the class B of languages admitting
a representation (18) is a Boolean algebra containing the the Biichi G5 sets. Given that these are exactly the

class HBR, Corollary 1 implies w-REG C B. It is not complicated to show B is closed under complement and
finite union. The details can be found in [1].
The above theorem allows us to conclude

Corollary 3. w-REG = |, ., D,
Recalling notation, let D denote the class D,,(I19) restricted to only the w-regular sets. As we just saw,
DR =D, n U D,

n<w

What is now left to be investigated is if for each n < w, the levels D and D,, are the same. In other words,
for a given L € w-REG, can the length of the sequence of G5 sets—of which L is the union of differences—the
same, whether or not we restrict our attention to the w-regular G5 ?
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Theorem 11. Let D,, denote the difference hierarchy of w-REG given in terms of Buchi Gs languages, and let
DR denote the Hausdorff-Kuratowski difference hierarchy of A w-Regular sets. Then for each n,

DZS =D, (19)
Clearly, D,, € D%, therefore we will prove
LeDR=LeD, (20)

The following lemma is quite useful. Note that it is not immediate because the acceptance components are
families of subsets from the same state set Q.

Lemma 9. Let Ly and Ly be two languages in w-REG over the same alphabet 3, and suppose Ly C Ly. Then
there two acceptance components Foo, Fe and a finite state automaton A; = (Q, X, 6, qo, Fy) where F; C P(Q)
fori e {1,2} such that L1 = L(A,), Ly = L(As), and F; C Fa.

Proof. The goal is to construct a product automaton from the deterministic Muller automata 3; and By accepting
w-regular languages L; and Lo respectively.

Let Bl = (Qla Za 517 q1, gl) and BQ = (QQ, Ea 627 q1, g2)

We define A; = (Q, X, 6, qo, F; as such : 8

— Q:=Q1 X Q2
— qo = (q1,¢2)
T 6((p7 Q)va‘) = (61(]), a)’52(Q7a’) where pE Ql: qc QQ: and a € X

— P ={FCQixQ|m(F)eG A m(F)ecg}
— F={FCQ xQ2|m(F) €0
Effectively, we have that A; recognizes L; for i € {1,2} and F; C Fo. O

4.2 Cyclic closures

Instead of using Wagner’s same notion of essential sets (strongly connected components) to investigate
w-REG, Barua generalizes techniques applied by Landweber in [7], in which Landweber proved the result of
Theorem 12 for n = 1 (Theorem 4.2 of 7] ). The specific statement of the result will be given by Theorem 13.
In fact, this particular case is equivalent to the characterization of w-regular 119 languages given in Lemma 6 :
D; = DF implies that the class of Biichi Gs’s (D) is exactly the class of w-regular II3 subsets of ¥« (D).

The proof of the correspondance for n > 2 relies upon an inductive construction of acceptance components
F; such that equipping a finite state Muller automaton with F; produces a Biichi G5 language. From there, we
can improve a separation-like theorem that will conclude Theorem 11.

Theorem 12. [7] An language L C X% is G5 if and only if there exists a language X C ¥* such that « € L if
and only if there exist finite words x1 C xo T ...x; C ... such that x; € X and z[i] C « for all i < w.

Primarily, Barua defines the operation of taking the cyclic closure of an acceptance component F C P(Q).
In this subsection we define this operation, give some of its properties (namely, an analogue of Lemma 6.3),
and see how it operates in the proof of Theorem 12. In particular, cyclic closures will influence the algorithms
promised by the decidability results of Section 4.3. We now look at a theorem necessary for proving the level-
correspondance between D and D,,. It will be used to prove a sort of automata-theoretic separation theorem
that will complete Theorem 11. A small remark :

We are interested in presenting the proof of this theorem, due to [1], since it extends the characterization(s)
given in Lemma 9. Then recalling that w-REG is the Boolean closure of the Biichi Gs languages, the proof to
follow provides an instance of how an automata-theoretic property of a certain class of subsets of ¥ can be
used to establish a sort of regularity property of the class’s Boolean closure. The class in question (II9) having
a topological correspondance, we could wonder if similar techniques can be applied with respect to a different
Polish topology such as those in [3].

As in the beginning of section 3.1, to investigate the language accepted by a finite state machine we first
identify which subsets F' C @ are "useful", in the sense that they could be visited infinitely often during a run.

Specifically, we look for realizable cycles.

In the following definitions we fix deterministic Muller automaton A = (Q, %, 0, qo, F)-

8. the automaton A; is technically considered one machine; the index i is to keep track of which acceptance component with
which we equip it
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Definition 16. Let ¢ € Q and w € ¥* denote by Qq,w] the set of intermediate transitions :

Qlg, w] :={d(g, w(i]) [ 0 <i < |wl} (21)
Fixing our attention on loops :

Definition 17. For g € Q, the set of realizable cycles (noted C,) is the set of Q[q, w] such that there is a
cycle around q labeled by the word w. Symbolically,

Cq :={Q(q,w) | (¢, w) = ¢} (22)

Note that C, is an essential set. Visually we can think of the sets C; as in the figure below.
Let us now see the operation F +— F, called the cyclic closure operation.

Definition 18. For F C P(Q), the cyclic closure F is the set
F={RUF|3ecQ stFeFNC, A FyeC,)}

The intuition behind the cyclic closure is that it collects those essential sets (F' € M(.A)) that contain some
accepting set F’ € MT(A). It is a sort of way to do a "one step extension" to a language different than L(A),
yet still keeping track of L(.A). If no such proper extension exists, we can define a new class of Muller automata,
and we will show that the properties of this class are tightly related to others we have already seen.

Definition 19. A Muller automaton A = (Q, 3,4, qo, F) is cycle-closed if the cyclic closure F is contained
in F.
Indeed, the above is equivalent to the characterizations from Lemma 9 : suppose there is some F' € F such

that I’ € F¢; by definition of ]?, F = F; U F, where for some ¢ € Q, Fy € A;NF. Then F; is an accepting

set contained in a rejecting set, and A is not full-table. Conversely, if 7 C F, the remark after Definition 18
quickly implies all supersets of accepting sets are necessarily accepting.
We can then relativize Lemma 9 to our new definitions :

Theorem 13. Let L C X% be an w-regular language ; L = L(A) for some finite state deterministic Muller A.
If A is cycle closed, then L(A) is Biichi Gy.

Here is a rough proof : consider some finite state machine which is not cycle closed, say B = (Q, %, d, g0, F
with F ¢ F. If we apply Wagner’s chain measure, we can identify F' € F \ F as a set in M . Therefore,

mT(B) > 2. In the proof of Theorem 5 we saw that any language in the downwards class C3 cannot have
m*(B) = 2 so we can conclude F \ F # 0 = L(B) ¢ I19. However, Theorem 13 says that if we replace
acceptance component F of We now look at the covering-like theorem and its proof, where we will see the
inductive definition of a family F,, of acceptance components constructed in such a way to assure the "covering"
we want can be done by Biichi Ggs.
To prove the main theorem of the next section we need a technical lemma about cyclic closures; the proof is
found in [1].
Lemma 10. The operation F — F preserves set inclusion and is idempotent. Le., for F,G C P(Q),

1. FCG=FCG

2. F=F

4.3 The Main Results
Theorem 14. Let K, L C X% be two w-regular languages over a finite alphabet 3. Suppose there is a decreasing
sequence (G;)o<i<n of subsets of II3(X%), satisfying the following :
1. K C Gy
2. G;NL C Giqq fori<n,ieven
3. G;NK CGiyq fori<n,iodd
4. GoNL=0ifn even, and G, N K =0 if n odd
Then there is a decreasing sequence (H;)o<i<n of Biichi Gs sets also satisfying (1) - (4).
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Démonstration. We will consider the case n is even ; when n odd the proof is similar. Given n+ 1 nested decrea-
sing Gs subsets satisfying (1)-(4), we show that there is an sequence of equal length with the same properties,
yet all sets can actually be taken to be Biichi Gj.

Applying Lemma 7 with L; = L and Ly, = K, we get two acceptance components G; and Gx and a deter-
ministic Muller automaton Ax = (Q, %, 8, g0, Gx) where X € {L, K} such that L = L(Az) and K = L(Ag).
Moreover, G, NGk = 0, and n being even, G, N L = (). We now construct a family of acceptance components F;
for 0 < i < n. The idea is that these components will generate respectively the sequence of languages (H;)o<i<n,
and more importantly, they will each be cyclic closures.

First, let e
Fo =0k
For i < n and i odd,
Fi=Fi NG
For ¢ < n and i even,
Fi=F 100k

We can think of this construction as starting from the essential sets containing one of Ag’s accepting sets as a
subset, and at the next step we consider essential sets containing the F' € Fy which are accepting for Ap.

Let H; be the w-regular language over ¥ which is recognized by the deterministic Muller A; = (Q, %, §, qo, F;)-
A small detail : the n + 1 automata A; and the two A, Ak are essentially different versions of the same ma-
chine, working with the same state set ) and following the same transition fuction § with initial state qq, yet
the decision procedure of the automaton will obviously vary depending upon the acceptance component.

We now verify the sequence (H;)o<i<n satisfies the desired properties :

1. that each language H; is Biichi Gy is given by Theorem 14.

2. Lemma 11.1 gives that F;+1 C F;, and therefore H;;; C H; for 0 < i < n.

3. K C Hj by definition of Fy.

4. For i < n, i odd, H; N K C H;y; : Since H; is generated by F; = fz—_\l N Fr, the language H; N K is

generated by F; N Fr, C ./7-"\2 N Fk, hence by Lemma 11.1 again H;N K C H;4;.

For i < n, i even, similar reasoning as (4) above gives H; N L C H; 4.

6. H, N L = () For this to hold, it suffices to show F,, N Fr = (). Verifying this turns out to be the most
technical part of the proof, and so we refer the reader to [1] for the details.

o

This shows family of Biichi Gss (H;)o<i<n verifies conditions (1)-(4) of the statement of the theorem.

We can prove the following "separation" theorem.

Theorem 15. Let K and L be two w-reqular languages over ¥ such that K N L = (). Suppose there exists a
decreasing sequence of G5 subsets of ¥%, Go 2 ... D G, such that | Jo<i<n(Gi — Git1)? separates K from L, i.e.

ieven

Kg U (Gi_Gi+1) AN [ U (Gi_Gi+1)]mL:® (23)
ogign ogign

Then there is a decreasing sequence of Biichi Gss, Hy 2 ... O H,, such that Uogign(Hi — H;11) separates K
from L. e

Proof. One can check that sequence(G;)o<i<n satisfies the 4 conditions of Theorem 15, hence we obtain a family
of Biichi Ggs (H;)o<i<n with the same properties. Then the set | Jo<i<n(H; — H;41) also separates K from L. [
ieven

We are finally ready to prove (20) from Theorem 12. We restate it here for practicality.

Theorem 16 (Theorem 12, reformulation). Suppose L is an w-regular language over X such that L € DZSH,
i.e. L =Jo<i<n(Gi — Giy1) for a decreasing sequence of G5 subsets of X.Then there is a decreasing sequence
even
of Biichi G5 languages over ¥ (H;)o<i<n such that L = Jo<i<n(H; — Hit1), and thus L € Dy 44.
ieven
Proof. The existence of the family (H;)o<i<n follows from the separation theorem, taking L and LC as the

disjoint w-regular languages (recall the class w-REG is closed by complementation).
Then L = Uogign(Hi — Hi+1), and so

ieven

LeDF,=LeD,y
This completes the proof. O

9. when n is even we take Gp41 = 0
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4.3.1 Decidability ; Complexity of Muller automata

We end with the decidability results. As we have seen, a Muller automaton A accepts a Gs w-regular lan-
guage is full table, so we associate the level D; with these Muller automata. Since a language in the class Dy
(languages L which can be written as L = L; — Lo, L1 D Ly)is strictly more complex than the G5 languages,
yet still w-regular (and thus in AY), there exists a deterministic Muller automaton B accepting this language.
Consequently, we can say B is more complex than A- in this way Barua easily defines a hierarchy on Muller
automata.

The rank of complexity of a Muller automaton in this sense of Barua is decidable : the proofs of Theorem 14
and 15 implicitly give the necessary algorithm.

In [1] these complexity classes are denoted by M,, and are defined on Muller automata A according to the
rank of the language recognized in the difference hierarchy :

M, ={A|L(A) € D,}

Theorem 17. Given a deterministic Muller automaton A and some n < w, there is an algorithm for deciding
whether A € M,,.

Corollary 4. Given an w-reqular language L C X%, it is decidable at which n L resides in the Hausdorff
Kuratowski difference hierarchy for AgR.

5 Conclusion

The purpose of this research project was to investigate compatible frameworks for determining the com-
plexity of infinite sequences over a finite set. Specifically, we saw how the chain and superchain measures are a
pure structural gauge on the class of w-regular languages, i.e. they are invariants of the w regular subsets of ¢
. It is one of the finest hierarchies one can put on w-REG. We took Wagner’s classification results and tried to
relate them to the set theoretic results about classes of languages as defined by different automata.

The theme of alternation observable in Wagner’s measures is continued in looking at the connection between
the Hausdorff Kuratowski difference hierarchy of AY sets, first done by Barua in [1], the other main paper this
project focused on. There, we saw a similar difference hierarchy can be defined on w-REG. Since the w-regular
AY subsets do not nearly exhaust the entire class AY, it is not immediate that we have level equivalence between
Barua’s hierarchy and the relativized Hausdorff-Kuratowski one, but using automata-theoretic properties of the
generating class of w-REG (the Biichi Gss) Barua was able to extend a result done by Landweber almost 20
years prior.

One advantage of working with finite state machines was that many classification questions became deci-
dable, and there has also been a lot of work done in automata theory analyzing the efficiency of the necessarily
terminating algorithms. Thus in some cases, we can consider the theory of finite state automata on infinite

languages as bridging classical results modern applications.

The writer would like to thank Olivier Finkel for taking time to direct in this research project.
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